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Foreword

Zero-knowledge proofs are fascinating and extremely useful constructs. Their
fascinating nature is due to their seemingly contradictory definition; zero-
knowledge proofs are convincing and yet yield nothing beyond the validity of
the assertion being proved. Their applicability in the domain of cryptography
is vast; they are typically used to force malicious parties to behave according
to a predetermined protocol. In addition to their direct applicability in cryp-
tography, zero-knowledge proofs serve as a good benchmark for the study of
various problems regarding cryptographic protocols (e.g., “secure composition
of protocols”).

A fundamental question regarding zero-knowledge protocols refers to the
preservation of security (i.e., of the zero-knowledge feature) when many in-
stances are executed concurrently, and in particular under a purely asyn-
chronous model. The practical importance of this question, in the days of
extensive Internet communication, seems clear. It turned out that this ques-
tion is also very interesting from a theoretical point of view. In particular, this
question served as a benchmark for the study of the security of concurrent
executions of protocols and led to the development of techniques for coping
with the problems that arise in that setting.

Protocols that remain zero-knowledge also when many instances are exe-
cuted concurrently are called concurrent zero-knowledge, and the current book
is devoted to their study. In view of the fact that the aforementioned generic
application of zero-knowledge protocols relies on their existence for any NP-
set, we focus on the construction of concurrent zero-knowledge for every NP-
set. The book starts by establishing the mere existence of concurrent zero-
knowledge protocols (for any NP-set). We stress that the mere existence of
non-trivial concurrent zero-knowledge protocols was not clear for a couple of
years, and was established by Richardson and Kilian (in the late 1990s). Once
the existence of concurrent zero-knowledge protocols (for any NP-set) was
established, the study turned to the complexity of such protocols, focusing
on the round-complexity (which is arguably the most important complexity
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measure). The bulk of the book is devoted to the presentation of the results
of that study. The main results presented in this book are:

1. Under standard intractability assumptions, concurrent zero-knowledge
proofs with almost-logarithmically many rounds do exist (for any NP-
set). As with all prior work, this result is established using a “black-box
simulator”.

2. Black-box simulators cannot establish the concurrent zero-knowledge
property of non-trivial protocols having significantly fewer than logarith-
mically many rounds. Black-box simulators are the most natural way to
establish the zero-knowledge feature of protocols, and until very recently
they were (falsely) considered unavoidable (and so limitations concerning
them were considered inherent to zero-knowledge itself).

Combined, these two results determine the round-complexity of concurrent
zero-knowledge when restricted to black-box simulations. In doing so, these
results make a significant contribution to the study of zero-knowledge and
security of protocols at large.

We wish to stress that although we currently realize that “black-box zero-
knowledge” is weaker than standard zero-knowledge, it is still important to
determine the limits of “black-box” techniques. Firstly, asserting that some
problem cannot be solved using “black-box” techniques means that, even in
case it is solvable (by “non-black-box” techniques), this problem is inherently
harder than others that can be solved using “black-box” techniques. Indeed,
solutions that rely on “non-black-box” techniques tend to be more complex
not only from a conceptual perspective but also in terms of the time and
communication complexities of the resulting protocol. Furthermore, the latter
tend to provide a lower level of security.

The focus of this book is on the study of concurrent zero-knowledge pro-
tocols. In addition, the book contains a brief introduction to zero-knowledge
and a brief account of other developments in the study of zero-knowledge. The
purpose of these two augmentations, written by me, is to provide an intro-
duction to the basic concepts that underlie the main subject matter as well
as a wider perspective on them.

Weizmann Institute of Science Oded Goldreich
April 2006
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1

A Brief Introduction to Zero-Knowledge
(by Oded Goldreich)

Zero-knowledge proofs, introduced by Goldwasser, Micali and Rackoff [72],
are fascinating and extremely useful constructs. Their fascinating nature is
due to their seemingly contradictory definition; zero-knowledge proofs are
both convincing and yet yield nothing beyond the validity of the assertion
being proven. Their applicability in the domain of cryptography is vast: Fol-
lowing the results of Goldreich, Micali and Wigderson [65], zero-knowledge
proofs are typically used to force malicious parties to behave according to
a predetermined protocol. In addition to their direct applicability in cryp-
tography, zero-knowledge proofs serve as a good benchmark for the study of
various problems regarding cryptographic protocols (e.g., the “preservation
of security under various forms of protocol composition” and the “use of the
adversary’s program within the proof of security”).

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

?

!

?

!

??

 !

X X  is  true!

Fig. 1.1. Zero-knowledge proofs – an illustration.

We wish to highlight also the indirect impact of zero-knowledge on the defi-
nitional approach underlying the foundations of cryptography (cf. Sect. 1.2.1).
In addition, zero-knowledge has served as a source of inspiration for complex-
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ity theory. In particular, it served as the main motivation towards the in-
troduction of interactive proof systems [72] and multiprover interactive proof
systems [17] (which, in turn, led to the exciting developments regarding PCP
and the complexity of approximation [44, 4, 3]).

A Very Brief Summary of this Chapter. Loosely speaking, zero-knowledge
proofs are proofs that yield nothing beyond the validity of the assertion. That
is, a verifier obtaining such a proof only gains conviction in the validity of
the assertion. This is formulated by saying that anything that is feasibly com-
putable from a zero-knowledge proof is also feasibly computable from the
(valid) assertion itself (by a so-called simulator). Variants on the basic defini-
tion include (see Sect. 1.2.3):

• consideration of auxiliary inputs;
• mandating of universal and black-box simulations;
• restricting attention to honest (or rather semi-honest) verifiers;
• the level of similarity required of the simulation.

It is well known (see Sect. 1.3) that zero-knowledge proofs exist for any NP-
set, provided that one-way functions exist. This result is a powerful tool in
the design of cryptographic protocols, because it can be used to force parties
to behave according to a predetermined protocol (i.e., the protocol requires
parties to provide zero-knowledge proofs of the correctness of their secret-
based actions, without revealing these secrets).

A natural question regarding zero-knowledge proofs is whether the zero-
knowledge condition is preserved under a variety of composition operations.
Indeed, most of this book is devoted to the study of concurrent composition
of zero-knowledge proofs, but more restricted types of composition are also
of interest. The main facts regarding composition of zero-knowledge proto-
cols are:

• Zero-knowledge is closed under sequential composition.
• In general, zero-knowledge is not closed under parallel composition. Yet,

some zero-knowledge proofs (for NP) preserve their security when many
copies are executed in parallel. Furthermore, some of these protocols use
a constant number of rounds, and this result extends to restricted forms
of concurrent composition (i.e., “bounded asynchronicity”).

• Some zero-knowledge proofs (for NP) preserve their security when many
copies are executed concurrently, but such a result is not known for
constant-round protocols. Indeed, most of this book is devoted to the study
of the round-complexity of concurrent zero-knowledge protocols.

Organization of this Chapter. In this chapter we present the basic def-
initions and results regarding zero-knowledge protocols. We start with some
preliminaries (Sect. 1.1), which are central to the “mind-set” of the notion of
zero-knowledge. In particular, we review the definitions of interactive proofs
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and arguments as well as the definitions of computational indistinguishabil-
ity (which underlies the definition of general zero-knowledge) and of one-way
functions (which are used in constructions). We then turn to the definitional
treatment of zero-knowledge itself, provided in Sect. 1.2. In Sect. 1.3 we review
the main feasibility result regarding zero-knowledge proofs and its typical ap-
plications. We conclude this chapter with a brief survey of results regarding
sequential, parallel and concurrent composition (Sect. 1.4).

Suggestions for Further Reading. A brief account of other developments
regarding zero-knowledge protocols is provided in Chap. 9. For further details
regarding the material presented in Sect. 1.1–1.3, the reader is referred to [57,
Chap. 4]. For a wider perspective on probabilistic proof systems, the reader
is referred to [56, Chap. 2].

1.1 Preliminaries

Modern cryptography is concerned with the construction of efficient schemes
for which it is infeasible to violate the security feature. The same concern
underlies the main definitions of zero-knowledge. Thus, for starters, we need a
notion of efficient computations as well as a notion of infeasible ones. The com-
putations of the legitimate users of the scheme ought to be efficient, whereas
violating the security features (via an adversary) ought to be infeasible.

Efficient computations are commonly modeled by computations that are
polynomial-time in the security parameter. The polynomial bounding the run-
ning time of the legitimate user’s strategy is fixed and typically explicit (and
small). Here (i.e., when referring to the complexity of the legitimate users) we
are in the same situation as in any algorithmic setting.

Things are different when referring to our assumptions regarding the com-
putational resources of the adversary. A common approach is to postulate
that the latter are polynomial-time too, where the polynomial is not a priori
specified. In other words, the adversary is restricted to the class of efficient
computations and anything beyond this is considered to be infeasible. Al-
though many definitions explicitly refer to this convention, this convention is
inessential to any of the results known in the area. In all cases, a more general
statement can be made by referring to adversaries of running-time bounded
by any super-polynomial function (or class of functions). Still, for sake of
concreteness and clarity, we shall use the former convention in our treatment.

Actually, in order to simplify our exposition, we will often consider as infea-
sible any computation that cannot be conducted by a (possibly non-uniform)
family of polynomial-size circuits. For simplicity we consider families of cir-
cuits {Cn}, where for some polynomials p and q, each Cn has exactly p(n)
input bits and has size at most q(n).

Randomized computations play a central role in the definition of zero-
knowledge (as well as in cryptography at large). That is, we allow the legit-
imate users to employ randomized computations, and likewise we consider
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adversaries that employ randomized computations. This brings up the issue
of success probability: typically, we require that legitimate users succeed (in
fulfilling their legitimate goals) with probability 1 (or negligibly close to this),
whereas adversaries succeed (in violating the security features) with negligible
probability. Thus, the notion of a negligible probability plays an important role
in our exposition. One feature required of the definition of negligible probability
is to yield a robust notion of rareness: A rare event should occur rarely even
if we repeat the experiment for a feasible number of times. Likewise, we con-
sider two events to occur “as frequently” if the absolute difference between
their corresponding occurrence probabilities is negligible. For concreteness,
we consider as negligible any function µ : N → [0, 1] that vanishes faster than
the reciprocal of any polynomial (i.e., for every positive polynomial p and all
sufficiently big n, it holds that µ(n) < 1/p(n)).

1.1.1 Interactive Proofs and Argument Systems

A proof is whatever convinces me.

Shimon Even, answering a student’s question
in his Graph Algorithms class (1978)

Before defining zero-knowledge proofs, we have to define proofs. The stan-
dard notion of static (i.e., non-interactive) proofs will not do, because static
zero-knowledge proofs exist only for sets that are easy to decide (i.e., are in
BPP) [67], whereas we are interested in zero-knowledge proofs for arbitrary
NP-sets. Instead, we use the notion of an interactive proof (introduced ex-
actly for that reason by Goldwasser, Micali and Rackoff [72]). That is, here
a proof is a (multiround) randomized protocol for two parties, called verifier
and prover, in which the prover wishes to convince the verifier of the valid-
ity of a given assertion. Such an interactive proof should allow the prover to
convince the verifier of the validity of any true assertion, whereas no prover
strategy may fool the verifier to accept false assertions. Both the above com-
pleteness and soundness conditions should hold with high probability (i.e., a
negligible error probability is allowed).

We comment that interactive proofs emerge naturally when associating the
notion of efficient verification, which underlies the notion of a proof system,
with probabilistic and interactive polynomial-time computations. This associ-
ation is quite natural in light of the growing acceptability of randomized and
distributed computations. Thus, a “proof” in this context is not a fixed and
static object, but rather a randomized and dynamic (i.e., interactive) process
in which the verifier interacts with the prover. Intuitively, one may think of
this interaction as consisting of “tricky” questions asked by the verifier, to
which the prover has to reply “convincingly”. The above discussion, as well as
the following definition, makes explicit reference to a prover, whereas a prover
is only implicit in the traditional definitions of proof systems (e.g., NP-proofs).
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Loosely speaking, an interactive proof is a game between a computation-
ally bounded verifier and a computationally unbounded prover whose goal
is to convince the verifier of the validity of some assertion. Specifically, the
verifier is probabilistic polynomial-time. It is required that if the assertion
holds then the verifier always accepts (i.e., when interacting with an appro-
priate prover strategy). On the other hand, if the assertion is false then the
verifier must reject with “noticeable” probability, no matter what strategy is
being employed by the prover. Indeed, the error probability (in the soundness
condition) can be reduced by (either sequential or parallel) repetitions.

Definition 1.1.1 (Interactive proof systems and the class IP [72]) An inter-
active proof system for a set S is a two-party game, between a verifier executing
a probabilistic polynomial-time strategy (denoted V ) and a prover which exe-
cutes a computationally unbounded strategy (denoted P ), satisfying:

• Completeness: For every x ∈ S the verifier V always accepts after inter-
acting with the prover P on common input x.

• Soundness: For some polynomial p, it holds that for every x �∈ S and
every potential strategy P ∗, the verifier V rejects with probability at least
1/p(|x|), after interacting with P ∗ on common input x.

The class of problems having interactive proof systems is denoted IP.

Note that by repeating such a proof system for O(p(|x|)2) times, we may
decrease the probability that V accepts a false statement (from 1−(1/p(|x|)))
to 2−p(|x|). Thus, when constructing interactive proofs we sometimes focus on
obtaining a noticeable rejection probability for no-instances (i.e., obtaining a
soundness error bounded away from 1), whereas when using interactive proofs
we typically assume that their soundness error is negligible.

Variants. Arthur–Merlin games (a.k.a. public-coin proof systems), intro-
duced by Babai [5], are a special case of interactive proofs in which the verifier
must send the outcome of any coin it tosses (and thus need not send any other
information). Yet, as shown in [74], this restricted case has essentially the same
power as the general case (introduced by Goldwasser, Micali and Rackoff [72]).
Thus, in the context of interactive proof systems, asking random questions is
as powerful as asking “tricky” questions. (As we shall see, this does not nec-
essarily hold in the context of zero-knowledge proofs.) Also, in some sources
interactive proofs are defined so that two-sided error probability is allowed
(rather than requiring “perfect completeness” as done above); yet, this does
not increase their power [52].

Arguments (or Computational Soundness). A fundamental variant on
the notion of interactive proofs was introduced by Brassard, Chaum and
Crépeau [23], who relaxed the soundness condition so that it only refers to
feasible ways of trying to fool the verifier (rather than to all possible ways).
Specifically, the soundness condition was replaced by the following computa-
tional soundness condition that asserts that it is infeasible to fool the verifier
into accepting false statements. That is:
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For every polynomial p, every prover strategy that is implementable by
a family of polynomial-size circuits {Cn}, and every sufficiently large
x ∈ {0, 1}∗ \ S, the probability that V accepts x when interacting with
C|x| is less than 1/p(|x|).

We warn that although the computational-soundness error can always be
reduced by sequential repetitions, it is not true that this error can al-
ways be reduced by parallel repetitions (cf. [15]). Protocols that satisfy the
computational-soundness condition are called arguments.1 We mention that
argument systems may be more efficient than interactive proofs (see [80, 61]).

Terminology. Whenever we wish to blur the distinction between proofs and
arguments, we will use the term protocols. We will consider such a protocol
trivial if it establishes membership in a BPP-set (because membership in such
a set can be determined by the verifier itself). On the other hand, we will
sometimes talk about “protocols for NP”, when what we actually mean is
protocols for each set in NP. (The latter terminology is quite common in the
area; see [10] for further discussion of the distinction.)

1.1.2 Computational Difficulty and One-Way Functions

Most positive results regarding zero-knowledge proofs are based on intractabil-
ity assumptions. Furthermore, the very notion of a zero-knowledge proof is
interesting only in case the assertion being proven to be valid is hard to ver-
ify in probabilistic polynomial-time. Thus, our discussion always assumes (at
least implicitly) that IP is not contained in BPP, and often we explicitly
assume more than that.

In general, modern cryptography is concerned with the construction of
schemes that are easy to operate (properly) but hard to foil. Thus, a com-
plexity gap (i.e., between the complexity of proper usage and the complexity
of defeating the prescribed functionality) lies at the heart of modern cryp-
tography. However, gaps as required for modern cryptography are not known
to exist; they are only widely believed to exist. Indeed, almost all of modern
cryptography rises or falls with the question of whether one-way functions
exist. One-way functions are functions that are easy to evaluate but hard (on
the average) to invert (cf. [37]). That is, a function f : {0, 1}∗ → {0, 1}∗ is
called one-way if there is an efficient algorithm that on input x outputs f(x),
whereas any feasible algorithm that tries to find a preimage of f(x) under f
may succeed only with negligible probability (where the probability is taken
uniformly over the choices of x and the algorithm’s coin tosses). Associating
feasible computations with (possibly non-uniform) families of polynomial-size
circuits, we obtain the following definition.

1 A related notion not discussed here is that of CS-proofs, introduced by Mi-
cali [86].
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Definition 1.1.2 (One-way functions) A function f : {0, 1}∗ → {0, 1}∗ is
called one-way if the following two conditions hold:

1. Easy to evaluate: There exists a polynomial-time algorithm A such that
A(x) = f(x) for every x ∈ {0, 1}∗.

2. Hard to invert: For every family of polynomial-size circuits {Cn}, every
polynomial p, and all sufficiently large n,

Pr[Cn(f(x)) ∈ f−1(f(x))] <
1

p(n)

where the probability is taken uniformly over all the possible choices of
x ∈ {0, 1}n.

Some of the most popular candidates for one-way functions are based on the
conjectured intractability of computational problems in number theory. One
such conjecture is that it is infeasible to factor large integers. Consequently,
the function that takes as input two (equal length) primes and outputs their
product is widely believed to be a one-way function.

Terminology. Some of the known (positive) results (regarding zero-knowle-
dge) require stronger forms of one-way functions (e.g., one-way permuta-
tions with (or without) trapdoor [57, Sect. 2.4.4] and claw-free permutation
pairs [57, Sect. 2.4.5]). Whenever we wish to avoid the specific details, we will
talk about standard intractability assumptions. In all cases, the conjectured
intractability of factoring will suffice.

1.1.3 Computational Indistinguishability

Indistinguishable things are identical
(or should be considered as identical).

The Principle of Identity of Indiscernibles2

G.W. Leibniz (1646–1714)

A central notion in modern cryptography is that of “effective similarity” (in-
troduced by Goldwasser, Micali and Yao [71, 102]). The underlying thesis is
that we do not care whether or not objects are equal, all we care is whether
or not a difference between the objects can be observed by a feasible compu-
tation. In case the answer is negative, the two objects are equivalent as far
as any practical application is concerned. Indeed, like in many other crypto-
graphic definitions, in the definition of general/computational zero-knowledge
we will freely interchange such (computationally indistinguishable) objects.

The asymptotic formulation of computational indistinguishability refers to
(pairs of) probability ensembles, which are infinite sequences of finite distri-
butions, rather than to (pairs of) finite distributions. Specifically, we consider

2Leibniz admits that counterexamples to this principle are conceivable but will
not occur in real life because God is much too benevolent.
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sequences indexed by strings, rather than by integers (in unary representa-
tion). For S ⊆ {0, 1}∗, we consider the probability ensembles X = {Xα}α∈S

and Y = {Yα}α∈S , where each Xα (resp., Yα) is a distribution that ranges
over strings of length polynomial in |α|. We say that X and Y are com-
putationally indistinguishable if for every feasible algorithm A the difference
dA(n) def= maxα∈{0,1}n{|Pr[A(Xα) = 1] − Pr[A(Yα) = 1]|} is a negligible func-
tion in |α|. That is:

Definition 1.1.3 (Computational indistinguishability [71, 102]) We say that
X = {Xα}α∈S and Y = {Yα}α∈S are computationally indistinguishable if for
every family of polynomial-size circuits {Dn}, every polynomial p, all suffi-
ciently large n and every α ∈ {0, 1}poly(n) ∩ S,

|Pr[Dn(Xα)=1] − Pr[Dn(Yα)=1]| <
1

p(n)

where probabilities are taken over the relevant distribution (either Xn or Yn).

That is, we think of D = {Dn} as of somebody who wishes to distinguish two
distributions (based on a sample given to it), and think of 1 as of D’s verdict
that the sample was drawn according to the first distribution. Saying that
the two distributions are computationally indistinguishable means that if D
is an efficient procedure then its verdict is not really meaningful (because the
verdict is almost as often 1 when the input is drawn from the first distribution
as when the input is drawn from the second distribution).

We comment that indistinguishability by a single sample (as defined above)
implies indistinguishability by multiple samples. Also note that the definition
would not have been stronger if we were to provide the distinguisher (i.e., D)
with the index (i.e., α) of the distribution pair being tested.3

1.2 Definitional Issues
A: Please.
B: Please.
A: I insist.
B: So do I.
A: OK then, thank you.
B: You are most welcome.

A protocol for two Italians to pass through a door.4

Source: Silvio Micali, 1985.
3 Furthermore, the definition would not have been stronger if we were to consider

a specialized polynomial-size circuit for each α ∈ S (i.e., consider the difference
|Pr[Dα(Xα) = 1] − Pr[Dα(Yα) = 1]| for any set of circuits D = {Dα}α∈S such that
the size of Dα is polynomial in |α|).

4The protocol is zero-knowledge because it can be simulated without knowing
any of the secrets of these Italians; in fact, the execution is independent of their
secrets as well as of anything else.
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Loosely speaking, zero-knowledge proofs are proofs that yield nothing beyond
the validity of the assertion. That is, a verifier obtaining such a proof only
gains conviction in the validity of the assertion. This is formulated by saying
that anything that can be feasibly obtained from a zero-knowledge proof is also
feasibly computable from the (valid) assertion itself. The latter formulation
follows the simulation paradigm, which is discussed next.

1.2.1 The Simulation Paradigm

In defining zero-knowledge proofs, we view the verifier as a potential adversary
that tries to gain knowledge from the (prescribed) prover. We wish to state
that no (feasible) adversary strategy for the verifier can gain anything from
the prover (beyond conviction in the validity of the assertion). Let us consider
the desired formulation from a wide perspective.

A key question regarding the modeling of security concerns is how to ex-
press the intuitive requirement that an adversary “gains nothing substantial”
by deviating from the prescribed behavior of an honest user. Our approach
is that the adversary gains nothing if whatever it can obtain by unrestricted
adversarial behavior can be obtained within essentially the same computa-
tional effort by a benign behavior. The definition of the “benign behavior”
captures what we want to achieve in terms of security, and is specific to the
security concern to be addressed. For example, in the previous paragraph, we
said that a proof is zero-knowledge if it yields nothing beyond the validity
of the assertion (i.e., the benign behavior is any computation that is based
(only) on the assertion itself, while assuming that the latter is valid). Thus,
in a zero-knowledge proof no feasible adversarial strategy for the verifier can
obtain more than a “benign verifier”, which believes the assertion, can obtain
from the assertion itself. We comment that the simulation paradigm, which
was first developed in the context of zero-knowledge [72], is pivotal also to
the definition of the security of encryption schemes (cf. [58, Chap. 5]) and
cryptographic protocols (cf. [26] and [58, Chap. 7]).

A notable property of defining security (or zero-knowledge) via the simula-
tion paradigm is that this approach is “overly liberal” with respect to its view
of the abilities of the adversary as well as to what might constitute a gain for
the adversary. Thus, the approach may be considered overly cautious, because
it prohibits also “non-harmful” gains of some “far fetched” adversaries. We
warn against this impression. Firstly, there is nothing more dangerous in cryp-
tography than to consider “reasonable” adversaries (a notion which is almost
a contradiction in terms): typically, the adversaries will try exactly what the
system designer has discarded as “far fetched”. Secondly, it seems impossible
to come up with definitions of security that distinguish “breaking the scheme
in a harmful way” from “breaking it in a non-harmful way”: what is harmful
is application-dependent, whereas a good definition of security ought to be
application-independent (as otherwise using the scheme in any new applica-
tion will require a full re-evaluation of its security). Furthermore, even with
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respect to a specific application, it is typically very hard to classify the set of
“harmful breakings”.

1.2.2 The Basic Definition

Zero-knowledge is a property of some prover strategies. More generally, zero-
knowledge is a property of some interactive machines. Fixing an interactive
machine (e.g., a prescribed prover), we consider what can be computed by
an arbitrary feasible adversary (e.g., a verifier) that interacts with the fixed
machine on a common input taken from a predetermined set (in our case the
set of valid assertions). This is compared against what can be computed by an
arbitrary feasible algorithm that is only given the input itself. An interactive
strategy A is zero-knowledge on (inputs from) the set S if, for every feasible
(interactive) strategy B∗, there exists a feasible (non-interactive) computation
C∗ such that the following two probability ensembles are computationally
indistinguishable:

1. {(A,B∗)(x)}x∈S
def= the output of B∗ after interacting with A on common

input x ∈ S; and
2. {C∗(x)}x∈S

def= the output of C∗ on input x ∈ S.

We stress that the first ensemble represents an actual execution of an in-
teractive protocol, whereas the second ensemble represents the computation
of a stand-alone procedure (called the “simulator”), which does not inter-
act with anybody. Thus, whatever can be feasibly extracted from interac-
tion with A on input x ∈ S can also be feasibly extracted from x itself. This
means that nothing was gained by the interaction itself (beyond confidence in
the assertion x ∈ S).

The above definition does not account for auxiliary information that an
adversary may have prior to entering the interaction. Accounting for such
auxiliary information is essential for using zero-knowledge proofs as subpro-
tocols inside larger protocols (see [63, 67]). This is taken care of by a more
strict notion called auxiliary-input zero-knowledge.5

Definition 1.2.1 (Zero-knowledge [72], revisited [67]) A strategy A is auxiliary-
input zero-knowledge on inputs from S if for every probabilistic polynomial-
time strategy B∗ and every polynomial p there exists a probabilistic polynomial-
time algorithm C∗ such that the following two probability ensembles are com-
putationally indistinguishable:

5 We note that Definition 1.2.1 seems stronger than merely allowing the verifier
and simulator to be arbitrary polynomial-size circuits. The issue is that the latter
formulation does not guarantee that the simulator can be easily derived from the
cheating verifier nor that the length of the simulator’s description is related to the
length of the description of the verifier. Both issues are important when trying to use
zero-knowledge proofs as subprotocols inside larger protocols or to compose them
(even sequentially). For further discussion, see Sect. 1.4.
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1. {(A,B∗(z))(x)}x∈S , z∈{0,1}p(|x|)
def= the output of B∗ when having auxiliary-

input z and interacting with A on common input x ∈ S; and
2. {C∗(x, z)}x∈S , z∈{0,1}p(|x|)

def= the output of C∗ on inputs x ∈ S and z ∈
{0, 1}p(|x|).

An interactive proof (resp., an argument) system for S is called auxiliary-
input zero-knowledge if the prescribed prover strategy is auxiliary-input zero-
knowledge on inputs from S.6

The more basic definition of zero-knowledge is obtained by eliminating the
auxiliary-input z from Definition 1.2.1. We comment that almost all known
zero-knowledge proofs are in fact auxiliary-input zero-knowledge. (Notable
exceptions are zero-knowledge proofs constructed on purpose in order to show
a separation between these two notions (e.g., in [63]) and protocols having only
“non-black-box simulators” (see warm-up in [8]).) As hinted above, auxiliary-
input zero-knowledge is preserved under sequential composition [67].

We stress that the zero-knowledge property of an interactive proof (resp.,
argument) refers to all feasible adversarial strategies that the verifier may em-
ploy (in an attempt to extract knowledge from the prescribed prover that tries
to convince the verifier to accept a valid assertion). In contrast, the soundness
property of an interactive proof (resp., the computational-soundness property
of an argument) refers to all possible (resp., feasible) adversarial strategies
that the prover may employ (in an attempt to fool the prescribed verifier to
accept a false assertion). Finally, the completeness property (only) refers to
the behavior of both prescribed strategies (when given, as common input, a
valid assertion).

1.2.3 Variants

The reader may skip the current subsection and return to it whenever encoun-
tering (especially in Chap. 9) a notion that was not defined above.

Universal and Black-Box Simulation

We have already discussed two variants of the basic definition (i.e., with or
without auxiliary-inputs). Further strengthening of Definition 1.2.1 is ob-
tained by requiring the existence of a universal simulator, denoted C, that
is given the program of the verifier (i.e., B∗) as an auxiliary-input; that is, in
terms of Definition 1.2.1, one should replace C∗(x, z) by C(x, z, 〈B∗〉), where

6 Note that the prescribed verifier strategy (which is a probabilistic polynomial-
time strategy that only depends on the common input) is always auxiliary-input
zero-knowledge. In contrast, typical prover strategies are implemented by proba-
bilistic polynomial-time algorithms that are given an auxiliary input (which is not
given to the verifier), but not by probabilistic polynomial-time algorithms that are
only given the common input.
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〈B∗〉 denotes the description of the program of B∗ (which may depend on x
and on z).7 That is, we effectively restrict the simulation by requiring that it
be a uniform (feasible) function of the verifier’s program (rather than arbi-
trarily depend on it). This restriction is very natural, because it seems hard
to envision an alternative way of establishing the zero-knowledge property of
a given protocol.

Taking another step, one may argue that since it seems infeasible to
reverse-engineer programs, the simulator may as well just use the verifier
strategy as an oracle (or as a “black-box”). This reasoning gave rise to the
notion of black-box simulation, which was introduced and advocated in [62]
and further studied in numerous works (see, e.g., [30]). The belief was that
impossibility results regarding black-box simulation represent inherent limi-
tations of zero-knowledge itself. However, this belief has been refuted recently
by Barak [8]. For further discussion, see Sect. 9.1.

Knowledge Tightness

Intuitively, knowledge tightness is a refinement of zero-knowledge that is
aimed at measuring the “actual security” of the proof system; namely, how
much harder does the verifier need to work, when not interacting with the
prover, in order to compute something that it can compute after interacting
with the prover. Thus, knowledge tightness is the ratio between the running
time of the simulator and the running time of the verifier in the real interaction
simulated by the simulator. (For more details, see [57, Sect. 4.4.4.2].)

Note that black-box simulators guarantee that the underlying zero-know-
ledge protocol has knowledge tightness that is bounded by some fixed polyno-
mial. In fact, in some cases, the knowledge tightness can be bounded by a con-
stant (e.g., 2). In contrast, the general definition of zero-knowledge (i.e., Defi-
nition 1.2.1) does not guarantee that the knowledge tightness can be bounded
by some fixed polynomial. In fact, the non-black-box simulators of Barak [8]
seem to have a running time that is polynomially (but not linearly) related
to the running time of the verifier that they simulate.

Honest Verifier Versus General Cheating Verifier

The (general) definition of zero-knowledge (i.e., Definition 1.2.1) refers to all
feasible verifier strategies. This choice is most natural since zero-knowledge is
supposed to capture the robustness of the prover under any feasible (i.e., ad-
versarial) attempt to gain something by interacting with it. Thus, we typically
view the verifier as an adversary that is trying to cheat.

7 Actually, we may incorporate x and z in 〈B∗〉, and thus replace C(x, z, 〈B∗〉)
by C(〈B∗〉).
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A weaker and still interesting notion of zero-knowledge refers to what can
be gained by an “honest verifier” (or rather a semi-honest verifier)8 that in-
teracts with the prover as directed, with the exception that it may maintain
(and output) a record of the entire interaction (i.e., even if directed to erase all
records of the interaction). Although such a weaker notion is not satisfactory
for standard cryptographic applications, it yields a fascinating notion from a
conceptual as well as a complexity-theoretic point of view. Furthermore, as
shown in [68], every public-coin proof system that is zero-knowledge with re-
spect to the honest-verifier can be transformed into a standard zero-knowledge
proof that maintains many of the properties of the original protocol (and with-
out increasing the prover’s powers or using any intractability assumptions).

We stress that the definition of zero-knowledge with respect to the honest-
verifier V is derived from Definition 1.2.1 by considering a single verifier strat-
egy B that is equal to V except that B also maintains a record of the entire
interaction (including its own coin tosses) and outputs this record at the end
of the interaction. (In particular, the messages sent by B are identical to the
corresponding messages that would have been sent by V .)

Statistical Versus Computational Zero-Knowledge

Recall that the definition of zero-knowledge postulates that for every prob-
ability ensemble of one type (i.e., representing the verifier’s output after in-
teraction with the prover) there exists a “similar” ensemble of a second type
(i.e., representing the simulator’s output). One key parameter is the interpre-
tation of “similarity”. Three interpretations, yielding different notions of zero-
knowledge, have been commonly considered in the literature (cf., [72, 50]):

1. Perfect zero-knowledge (PZK) requires that the two probability ensembles
be identical.9

2. Statistical zero-knowledge (SZK) requires that these probability ensembles
be statistically close (i.e., the variation distance between them is negligi-
ble).

3. Computational (or rather general) zero-knowledge (CZK) requires that these
probability ensembles be computationally indistinguishable.

Indeed, computational zero-knowledge (CZK) is the most liberal notion, and
is the notion considered in Definition 1.2.1 as well as in most of this book. (In
particular, whenever we fail to qualify the type of zero-knowledge, we mean

8 The term “honest verifier” is more appealing when considering an alternative
(equivalent) formulation of Definition 1.2.1. In the alternative definition, the simula-
tor is “only” required to generate the verifier’s view of the real interaction, when the
verifier’s view includes its inputs, the outcome of its coin tosses, and all messages it
has received.

9 The actual definition of PZK allows the simulator to fail (while outputting a
special symbol) with some probability that is bounded away from 1, and the output
distribution of the simulator is conditioned on its not failing.
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computational zero-knowledge.) The only exception is Sect. 9.5, which is de-
voted to a discussion of statistical (or almost-perfect) Zero-Knowledge (SZK).
We note that the class SZK contains several problems that are considered
intractable.

Strict Versus Expected Probabilistic Polynomial-Time

So far, we did not specify what we exactly mean by the term probabilistic
polynomial-time. Two common interpretations are:

1. Strict probabilistic polynomial-time. That is, there exists a (polynomial in
the length of the input) bound on the number of steps in each possible
run of the machine, regardless of the outcome of its coin tosses.

2. Expected probabilistic polynomial-time. The standard approach is to look
at the running time as a random variable and bound its expectation (by
a polynomial in the length of the input). As observed by Levin [84]
(cf. [54]), this definitional approach is quite problematic (e.g., it is not
model-independent and is not closed under algorithmic composition), and
an alternative treatment of this random variable is preferable.10

The notion of expected polynomial-time raises a variety of conceptual and
technical problems. For that reason, whenever possible, one should pre-
fer to use the more robust (and restricted) notion of strict (probabilistic)
polynomial-time. Thus, with the exception of constant-round zero-knowledge
protocols, whenever we talk of a probabilistic polynomial-time verifier (resp.,
simulator) we mean one in the strict sense. In contrast, with the exception
of [8, 12],11 all results regarding constant-round zero-knowledge protocols refer
to a strict polynomial-time verifier and an expected polynomial-time simula-
tor, which is indeed a small cheat. For further discussion, the reader is referred
to [12].

10 Specifically, it is preferable to define expected polynomial-time as having run-
ning time that is polynomially related to a function that has linear expectation.
That is, rather than requiring that e[Xn] = poly(n), one requires that for some Yn

it holds that Xn = poly(Yn) and e[Yn] = O(n). The advantage of the latter approach
is that if Xn is deemed polynomial on the average then so is X2

n, which is not the
case under the former approach (e.g., Xn = 2n with probability 2−n and Xn = n
otherwise).

11 Specifically, in [8, 12] both the verifier and the simulator run in strict
polynomial-time. We comment that, as shown in [12], the use of non-black-box is
necessary for the non-triviality of constant-round zero-knowledge protocols under
the strict definition.
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1.3 Zero-Knowledge Proofs for Every NP-set

A question avoided so far is whether zero-knowledge proofs exist at all. Clearly,
every set in P (or rather in BPP)12 has a “trivial” zero-knowledge proof (in
which the verifier determines membership by itself); however, what we seek is
zero-knowledge proofs for statements that the verifier cannot decide by itself.

1.3.1 Constructing Zero-Knowledge Proofs for NP-sets

Assuming the existence of commitment schemes,13 which in turn exist if
one-way functions exist [87, 77], there exist (auxiliary-input) zero-knowledge
proofs of membership in any NP-set (i.e., sets having efficiently verifiable
static proofs of membership). These zero-knowledge proofs, first constructed
by Goldreich, Micali and Wigderson [65] (and depicted in Figure 1.2), have
the following important property: the prescribed prover strategy is efficient,
provided it is given as auxiliary-input an NP-witness to the assertion (to be
proven). That is:

Theorem 1.1 ([65], using [77, 87]) If one-way functions exist then every set
S ∈ NP has a zero-knowledge interactive proof. Furthermore, the prescribed
prover strategy can be implemented in probabilistic polynomial-time, provided
it is given as auxiliary-input an NP-witness for membership of the common
input in S.

Theorem 1.1 makes zero-knowledge a very powerful tool in the design of
cryptographic schemes and protocols (see below). We comment that the in-
tractability assumption used in Theorem 1.1 seems essential; see [91].

Analyzing the Protocol of Fig. 1.2. Let us consider a single execution
of the main loop (and rely on the fact that zero-knowledge is preserved un-
der sequential composition). Clearly, the prescribed prover is implemented
in probabilistic polynomial-time, and always convinces the verifier (provided
that it is given a valid 3-coloring of the common input graph). In case the
graph is not 3-colorable then, no matter how the prover behaves, the verifier
will reject with probability at least 1/|E| (because at least one of the edges
must be improperly colored by the prover). We stress that the verifier selects
uniformly which edge to inspect after the prover has committed to the colors
of all vertices. Thus, Fig. 1.2 depicts an interactive proof system for Graph
3-colorability. As can be expected, the zero-knowledge property is the hardest

12 Trivial zero-knowledge proofs for sets in BPP \ coRP require modifying the
definition of interactive proofs so as to allow a negligible error also in the com-
pleteness condition. Alternatively, zero-knowledge proofs for sets in BPP can be
constructed by having the prover send a single message that is distributed almost
uniformly (cf. [52]).

13 Loosely speaking, commitment schemes are digital analogues of non-
transparent sealed envelopes. See further discussion in Fig. 1.2.
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Commitment schemes are digital analogies of sealed envelopes (or, better,
locked boxes). Sending a commitment means sending a string that binds the
sender to a unique value without revealing this value to the receiver (as when
getting a locked box). Decommitting to the value means sending some auxil-
iary information that allows the receiver to read the uniquely committed value
(as when sending the key to the lock).

Common Input: A graph G(V, E). Suppose that V ≡ {1, ..., n} for n
def
= |V |.

Auxiliary Input (to the prover): A 3-coloring φ : V → {1, 2, 3}.
The following four steps are repeated t · |E| many times to obtain soundness-

error exp(−t).
Prover’s first step (P1): Select uniformly a permutation π over {1, 2, 3}. For

i = 1 to n, send the verifier a commitment to the value π(φ(i)).
Verifier’s first step (V1): Select uniformly an edge e ∈ E and send it to the

prover.
Prover’s second step (P2): Upon receiving e = (i, j) ∈ E, decommit to the i-th

and j-th values sent in Step (P1).
Verifier’s second step (V2): Check whether or not the decommitted values are

different elements of {1, 2, 3} and whether or not they match the commit-
ments received in Step (P1).

Fig. 1.2. The zero-knowledge proof of graph 3-colorability (of [65]). Zero-
knowledge proofs for other NP-sets can be obtained using the standard reduc-
tions.

to establish, and we will confine ourselves to presenting a simulator (which
we hope will convince the reader without a detailed analysis). We start with
three simplifying conventions (which are useful in general):

1. Without loss of generality, we may assume that the cheating verifier strat-
egy is implemented by a deterministic polynomial-size circuit (or, equiv-
alently, by a polynomial-time algorithm with an auxiliary input). This is
justified by fixing any outcome of the verifier’s coins, and observing that
our (uniform) simulation of the various (residual) deterministic strategies
yields a simulation of the original probabilistic strategy.

2. Without loss of generality, it suffices to consider cheating verifiers that
(only) output their view of the interaction (i.e., their input, coin tosses,
and the messages they received). This is justified by observing that the
output of the original verifier can be computed by an algorithm of compa-
rable complexity that is given the verifier’s view of the interaction. Thus,
it suffices to simulate the view that cheating verifiers have of the real
interaction.

3. Without loss of generality, it suffices to construct a “weak simulator”
that produces output with some noticeable probability. This is the case
because, by repeatedly invoking this weak simulator (polynomially) many
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times, we may obtain a simulator that fails to produce an output with
negligible probability, whereas the latter yields a simulator that never
fails (as required).

The simulator starts by selecting uniformly and independently a random color
(i.e., element of {1, 2, 3}) for each vertex, and feeding the verifier strategy with
random commitments to these random colors. Indeed, the simulator feeds the
verifier with a distribution that is very different from the distribution that the
verifier sees in a real interaction with the prover. However, being computa-
tionally restricted the verifier cannot tell these distributions apart (or else we
obtain a contradiction to the security of the commitment scheme in use). Now,
if the verifier asks to inspect an edge that is properly colored then the simula-
tor performs the proper decommitment action and outputs the transcript of
this interaction. Otherwise, the simulator halts proclaiming failure. We claim
that failure occurs with probability approximately 1/3 (or else we obtain a
contradiction to the security of the commitment scheme in use). Furthermore,
based on the same hypothesis (but via a more complex proof), conditioned on
not failing, the output of the simulator is computationally indistinguishable
from the verifier’s view of the real interaction.

Zero-Knowledge Proofs for Other NP-Sets. By using the standard
Karp-reductions to 3-colorability, the protocol of Fig. 1.2 can be used for
constructing zero-knowledge proofs for any set in NP. We comment that this
is probably the first time that an NP-completeness result was used in a “posi-
tive” way (i.e., in order to construct something rather than in order to derive
a hardness result). Subsequent positive uses of completeness results have ap-
peared in the context of interactive proofs [85, 100], probabilistically checkable
proofs [6, 44, 4, 3], “hardness versus randomness trade-offs” [7], and statistical
zero-knowledge [99].

Efficiency Considerations. The protocol in Fig. 1.2 calls for invoking some
constant-round protocol for a non-constant number of times. At first glance, it
seems that one can derive a constant-round zero-knowledge proof system (of
negligible soundness error) by performing these invocations in parallel (rather
than sequentially). Unfortunately, as demonstrated in [62], this intuition is
not sound. See further discussions in Sects. 1.4 and 9.1. We comment that the
number of rounds in a protocol is commonly considered the most important
efficiency criterion (or complexity measure), and typically one desires to have
it be a constant. We mention that, under standard intractability assumptions
(e.g., the intractability of factoring), constant-round zero-knowledge proofs
(of negligible soundness error) exist for every set in NP (cf. [62]).

1.3.2 Using Zero-Knowledge Proofs for NP-sets

We stress two important aspects regarding Theorem 1.1. Firstly, it provides
a zero-knowledge proof for every NP-set, and secondly the prescribed prover
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can be implemented in probabilistic polynomial-time when given an adequate
NP-witness. These properties are essential to the wide applicability of zero-
knowledge protocols.

A Generic Application. In a typical cryptographic setting, a user referred
to as U has a secret and is supposed to take some action depending on its se-
cret. The question is how can other users verify that U indeed took the correct
action (as determined by U ’s secret and the publicly known information). In-
deed, if U discloses its secret then anybody can verify that U took the correct
action. However, U does not want to reveal its secret. Using zero-knowledge
proofs we can satisfy both conflicting requirements (i.e., having other users
verify that U took the correct action without violating U ’s interest in not
revealing its secrets). That is, U can prove in zero-knowledge that it took the
correct action. Note that U ’s claim to having taken the correct action is an
NP-assertion (since U ’s legal action is determined as a polynomial-time func-
tion of its secret and the public information), and that U has an NP-witness
to its validity (i.e., the secret is an NP-witness to the claim that the action
fits the public information). Thus, by Theorem 1.1, it is possible for U to effi-
ciently prove the correctness of its action without yielding anything about its
secret. Consequently, it is fair to ask U to prove (in zero-knowledge) that it be-
haves properly, and so to force U to behave properly. Indeed, “forcing proper
behavior” is the canonical application of zero-knowledge proofs (see [66, 55]).

This general principle (i.e., “forcing proper behavior” via zero-knowledge
proofs), which is based on the fact that zero-knowledge proofs can be con-
structed for any NP-set, has been utilized in numerous different settings.
Indeed, this general principle is the basis for the wide applicability of zero-
knowledge protocols in cryptography.

Zero-Knowledge Proofs for All IP. We mention that under the same
assumption used in the case of NP, it holds that any set that has an interactive
proof also has a zero-knowledge interactive proof (cf. [78, 16]).

1.4 Composing Zero-Knowledge Protocols

A natural question regarding zero-knowledge proofs (and arguments) is whe-
ther the zero-knowledge condition is preserved under a variety of composition
operations. Three types of composition operation were considered in the litera-
ture: sequential composition, parallel composition and concurrent composition.
We note that the preservation of zero-knowledge under these forms of com-
position is not only interesting for its own sake, but rather also sheds light
on the preservation of the security of general protocols under these forms of
composition.

We stress that when we talk of composition of protocols (or proof systems)
we mean that the honest users are supposed to follow the prescribed program
(specified in the protocol description) that refers to a single execution. That is,
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the actions of honest parties in each execution are independent of the messages
they received in other executions. The adversary, however, may coordinate the
actions it takes in the various executions, and in particular its actions in one
execution may depend also on messages it received in other executions.

Let us motivate the asymmetry between the independence of executions
assumed of honest parties but not of the adversary. Coordinating actions
in different executions is possible but quite difficult. Thus, it is desirable to
use composition (as defined above) rather than to use protocols that include
inter-execution coordination-actions, which require users to keep track of all
executions that they perform. Actually, trying to coordinate honest executions
is even more problematic than it seems because one may need to coordinate
executions of different honest parties (e.g., all employees of a big cooperation
or an agency under attack), which in many cases is highly unrealistic. On
the other hand, the adversary attacking the system may be willing to go to
the extra trouble of coordinating its attack in the various executions of the
protocol.

For T ∈ {sequential, parallel, concurrent}, we say that a protocol is
T -zero-knowledge if it is zero-knowledge under a composition of type T . The
definitions of T -zero-knowledge are derived from Definition 1.2.1 by consid-
ering appropriate adversaries (i.e., adversarial verifiers); that is, adversaries
that can initiate a polynomial number of interactions with the prover, where
these interactions are scheduled according to the type T .14 The corresponding
simulator (which, as usual, interacts with nobody) is required to produce an
output that is computationally indistinguishable from the output of such a
type T adversary.

1.4.1 Sequential Composition

In this case, the protocol is invoked (polynomially) many times, where each
invocation follows the termination of the previous one. At the very least, secu-
rity (e.g., zero-knowledge) should be preserved under sequential composition,
or else the applicability of the protocol is highly limited (because one cannot
safely use it more than once).

Referring to Definition 1.2.1, we mention that whereas the “simplified”
version (i.e., without auxiliary inputs) is not closed under sequential compo-
sition (cf. [63]), the actual version (i.e., with auxiliary inputs) is closed un-
der sequential composition (cf. [67]). We comment that the same phenomena
arises when trying to use a zero-knowledge proof as a subprotocol inside larger

14 Without loss of generality, we may assume that the adversary never violates
the scheduling condition; it may instead send an illegal message at the latest possible
adequate time. Furthermore, without loss of generality, we may assume that all the
adversary’s messages are delivered at the latest possible adequate time.
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protocols. Indeed, it is for these reasons that the augmentation of the “most
basic” definition by auxiliary inputs was adopted in all subsequent works.15

Bottom-Line. Every protocol that is zero-knowledge (under Definition 1.2.1)
is sequential-zero-knowledge.

1.4.2 Parallel Composition

In this case, (polynomially) many instances of the protocol are invoked at the
same time and proceed at the same pace. That is, we assume a synchronous
model of communication, and consider (polynomially) many executions that
are totally synchronized so that the i-th message in all instances is sent exactly
(or approximately) at the same time. (Natural variants on this model are
discussed below as well as at the end of Sect. 1.4.3.)

It turns out that, in general, zero-knowledge is not closed under parallel
composition. A simple counter-example (to the “parallel composition conjec-
ture”) is depicted in Fig 1.3. This counter-example, which is adapted from [63],
consists of a simple protocol that is zero-knowledge (in a strong sense), but is
not closed under parallel composition (not even in a very weak sense).

We comment that, in the 1980s, the study of parallel composition was inter-
preted mainly in the context of round-efficient error reduction (cf. [47, 63]);
that is, the construction of full-fledge zero-knowledge proofs (of negligible
soundness error) by composing (in parallel) a basic zero-knowledge protocol
of high (but bounded away from 1) soundness error. Since alternative ways
of constructing constant-round zero-knowledge proofs (and arguments) were
found (cf. [62, 48, 25]), interest in parallel composition (of zero-knowledge pro-
tocols) has died. In retrospect, this was a conceptual mistake, because parallel
composition (and mild extensions of this notion) capture the preservation of
security in a fully synchronous (or almost-fully synchronous) communication
network. We note that the almost-fully synchronous communication model
is quite realistic in many settings, although it is certainly preferable not to
assume even weak synchronism.

Although, in general, zero-knowledge is not closed under parallel compo-
sition, under standard intractability assumptions (e.g., the intractability of
factoring), there exist zero-knowledge protocols for NP that are closed under
parallel composition. Furthermore, these protocols have a constant number of
rounds (cf. [59] for proofs and [39] for arguments).16 Both results extend also

15 Interestingly, the preliminary version of Goldwasser, Micali and Rackoff’s
work [72] used the “most basic” definition, whereas the final version of this work
used the augmented definition. In some works, the “most basic” definition is used
for simplicity, but typically one actually needs and means the augmented definition.

16 In case of parallel-zero-knowledge proofs, there is no need to specify the sound-
ness error because it can always be reduced via parallel composition. As mentioned
above, this is not the case with respect to arguments, which were therefore defined
to have negligible soundness error.
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Consider a party P holding a random (or rather pseudorandom) function f :
{0, 1}2n → {0, 1}n, and willing to participate in the following protocol (with
respect to security parameter n). The other party, called A for adversary, is
supposed to send P a binary value v ∈ {1, 2} specifying which of the following
cases to execute:

For v = 1: Party P uniformly selects α ∈ {0, 1}n, and sends it to A, which
is supposed to reply with a pair of n-bit long strings, denoted (β, γ). Party
P checks whether or not f(αβ) = γ. In case equality holds, P sends A
some secret information.

For v = 2: Party A is supposed to uniformly select α ∈ {0, 1}n, and sends
it to P , which selects uniformly β ∈ {0, 1}n, and replies with the pair
(β, f(αβ)).

Observe that P ’s strategy is zero-knowledge (even w.r.t. auxiliary-inputs as
defined in Definition 3.3.1): Intuitively, if the adversary A chooses the case
v = 1, then it is infeasible for A to guess a passing pair (β, γ) with respect to
the random α selected by P . Thus, except with negligible probability (when it
may get secret information), A does not obtain anything from the interaction.
On the other hand, if the adversary A chooses the case v = 2, then it obtains
a pair that is indistinguishable from a uniformly selected pair of n-bit long
strings (because β is selected uniformly by P , and for any α the value f(αβ)
looks random to A).
In contrast, if the adversary A can conduct two concurrenta executions with P ,
then it may learn the desired secret information: In one session, A sends v = 1
while in the other it sends v = 2. Upon receiving P ’s message, denoted α, in
the first session, A sends α as its own message in the second session, obtaining
a pair (β, f(αβ)) from P ’s execution of the second session. Now, A sends the
pair (β, f(αβ)) to the first session of P , this pair passes the check, and so A
obtains the desired secret.

a
Dummy messages may be added (in both cases) in order to make the above scheduling fit the

perfectly parallel case.

Fig. 1.3. A counter-example (adapted from [62]) to the parallel repetition
conjecture for zero-knowledge protocols.

to concurrent composition in a synchronous communication model, where the
extension is in allowing protocol invocations to start at different (synchronous)
times (and in particular executions may overlap but not run simultaneously).

We comment that parallel composition is problematic also in the context
of reducing the soundness error of arguments (cf. [15]), but our focus here
is on the zero-knowledge aspect of protocols regardless of whether they are
proofs, arguments or neither.

Bottom-Line. Under standard intractability assumptions, every NP-set has
a constant-round parallel-zero-knowledge proof.
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1.4.3 Concurrent Composition (With and Without Timing)

Concurrent composition generalizes both sequential and parallel composition.
Here (polynomially) many instances of the protocol are invoked at arbitrary
times and proceed at arbitrary pace. That is, we assume an asynchronous
(rather than synchronous) model of communication.

In the 1990s, when extensive two-party (and multiparty) computations
became a reality (rather than a vision), it became clear that it is (at least) de-
sirable that cryptographic protocols maintain their security under concurrent
composition (cf. [38]). In the context of zero-knowledge, concurrent composi-
tion was first considered by Dwork, Naor and Sahai [39]. Actually, two models
of concurrent composition were considered in the literature, depending on the
underlying model of communication (i.e., a purely asynchronous model and an
asynchronous model with timing). Both models cover sequential and parallel
composition as special cases.

Concurrent Composition in the Pure Asynchronous Model. Here we
refer to the standard model of asynchronous communication. In comparison to
the timing model, the pure asynchronous model is a simpler model and using
it requires no assumptions about the underlying communication channels.
However, it seems harder to construct concurrent zero-knowledge protocols
for this model. In particular, for a while it was not known whether concurrent
zero-knowledge proofs for NP exist at all (in this model). Under standard
intractability assumptions (e.g., the intractability of factoring), this question
was affirmatively resolved by Richardson and Kilian [94]. Following their work,
research has focused on determining the round-complexity of concurrent zero-
knowledge proofs for NP. This question is still open, and the current state of
the art regarding it is as follows:

• Under standard intractability assumptions, every language in NP has a
concurrent zero-knowledge proof with almost-logarithmically many rounds
(cf. [93], building upon [82], which in turn builds over [94]). Furthermore,
the zero-knowledge property can be demonstrated using a black-box sim-
ulator (see definition in Sects. 1.2.3 and 9.1). This result is presented in
Chap. 5.

• Black-box simulators cannot demonstrate the concurrent zero-knowledge
property of non-trivial proofs (or arguments) having significantly less than
logarithmically many rounds (cf. Canetti et al. [30]).17 This result is pre-
sented in Chap. 7.

• Recently, Barak [8] demonstrated that the “black-box simulation barrier”
can be bypassed. With respect to concurrent zero-knowledge he only ob-
tains partial results: constant-round zero-knowledge arguments (rather

17 By non-trivial proof systems we mean ones for languages outside BPP, whereas
by significantly less than logarithmic we mean any function f : N → N satisfying
f(n) = o(log n/ log log n). In contrast, by almost-logarithmic we mean any function
f satisfying f(n) = ω(log n).
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than proofs) for NP that maintain security as long as an a priori bounded
(polynomial) number of executions take place concurrently. (The length
of the messages in his protocol grows linearly with this a priori bound.)

Thus, it is currently unknown whether or not constant-round protocols for
NP may be concurrent zero-knowledge (in the pure asynchronous model).

We comment that the result of Canetti et al. [30] was proven at a time
when it was (falsely) believed that limitations concerning “black-box simula-
tors” are inherent to zero-knowledge itself. This belief turned out to be wrong;
see Sect. 9.1 for further discussion. Still black-box simulators are the natural
way to demonstrate the zero-knowledge feature of protocols, and it is still im-
portant to determine the limits of “black-box” techniques. One reason is that
asserting that some problem cannot be solved using “black-box” techniques
means that, even in case it is solvable (by “non-black-box” techniques), this
problem is inherently harder than others that can be solved using “black-box”
techniques. Indeed, solutions that rely on “non-black-box” techniques tend to
be more complex not only from a conceptual perspective but also in terms
of the time and communication complexities of the resulting protocol. Fur-
thermore, the latter tend to provide a lower level of security (e.g., in terms of
knowledge tightness, as discussed in Sect. 1.2.3).

Concurrent Composition Under the Timing Model. A model of naturally-
limited asynchronousness (which certainly covers the case of parallel composi-
tion) was introduced by Dwork, Naor and Sahai [39]. Essentially, they assume
that each party holds a local clock such that the relative clock rates are
bounded by an a priori known constant, and consider protocols that employ
time-driven operations (i.e., time-out in-coming messages and delay out-
going messages). The benefit of the timing model is that it is known to con-
struct concurrent zero-knowledge protocols in it. Specifically, using standard
intractability assumptions, constant-round arguments and proofs that are con-
current zero-knowledge under the timing model do exist (cf. [39] and [59],
respectively). The disadvantages of the timing model are discussed next.

The timing model consists of the assumption that talking about the actual
timing of events is meaningful (at least in a weak sense) and of the introduc-
tion of time-driven operations. The timing assumption amounts to postulating
that each party holds a local clock and knows a global bound, denoted ρ ≥ 1,
on the relative rates of the local clocks.18 Furthermore, it is postulated that
the parties know a (pessimistic) bound, denoted ∆, on the message deliv-
ery time (which also includes the local computation and handling times). In
our opinion, these timing assumptions are most reasonable, and are unlikely
to restrict the scope of applications for which concurrent zero-knowledge is
relevant. We are more concerned about the effect of the time-driven opera-
tions introduced in the timing model. Recall that these operations are the

18 The rate should be computed with respect to reasonable intervals of time; for
example, for ∆ as defined below, one may assume that a time period of ∆ units is
measured as ∆′ units of time on the local clock, where ∆/ρ ≤ ∆′ ≤ ρ∆.
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time-out of in-coming messages and the delay of out-going messages. Fur-
thermore, typically the delay period is at least as long as the time-out period,
which in turn is at least ∆ (i.e., the time-out period must be at least as long as
the pessimistic bound on message-delivery time as so not to disrupt the proper
operation of the protocol). This means that the use of these time-driven oper-
ations yields a slowing down of the execution of the protocol (i.e., running it
at the rate of the pessimistic message-delivery time rather than at the rate of
the actual message-delivery time, which is typically much faster). Still, in the
absence of more appealing alternatives (i.e., a constant-round concurrent zero-
knowledge protocol for the pure asynchronous model), the use of the timing
model may be considered reasonable. (We comment that other alternatives to
the timing-model include various set-up assumptions; cf. [28, 34].)

Back to Parallel Composition. Given our opinion about the timing model,
it is not surprising that we consider the problem of parallel composition al-
most as important as the problem of concurrent composition in the timing
model. Firstly, it is quite reasonable to assume that the parties’ local clocks
have approximately the same rate, and that drifting is corrected by occasional
clock synchronization. Thus, it is reasonable to assume that the parties have
approximately-good estimate of some global time. Furthermore, the global
time may be partitioned into phases, each consisting of a constant number
of rounds, so that each party wishing to execute the protocol just delays its
invocation to the beginning of the next phase. Thus, concurrent execution of
(constant-round) protocols in this setting amounts to a sequence of (time-
disjoint) almost-parallel executions of the protocol. Consequently, proving
that the protocol is parallel zero-knowledge suffices for concurrent compo-
sition in this setting.

Relation to Resettable Zero-Knowledge. Going to the other extreme,
we mention that there exists a natural model of zero-knowledge that is even
stronger than concurrent zero-knowledge (even in the pure asynchronous
model). Specifically, “resettable zero-knowledge” as defined in Sect. 9.6, im-
plies concurrent zero-knowledge.
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Introduction to Concurrent Zero-Knowledge

The past two and a half decades have witnessed unprecedented progress in the
field of cryptography. During these years, many cryptographic tasks have been
subject to rigorous treatment and numerous constructions realizing these tasks
have been proposed. By now, the scope of cryptographic constructions ranges
from simple schemes that realize “atomic” tasks such as authentication, iden-
tification, encryption and digital signatures, to fairly complex protocols that
realize “high-level” tasks such as general secure two-party computation (the
latter being so general that it captures almost any conceivable cryptographic
task in which two mutually distrustful parties interact).

The original setting in which cryptographic protocols were investigated
consisted of a single execution of the protocol at a time (this is the so-called
stand-alone setting). A more realistic setting, especially in the era of the Inter-
net, is one that allows the concurrent execution of protocols. In the concurrent
setting many protocols are executed at the same time, involving multiple par-
ties that may be talking with the same (or many) other parties simultaneously.
The concurrent setting presents the new risk of a coordinated attack in which
an adversary controls many parties, interleaving the executions of the pro-
tocols while trying to extract knowledge based on the existence of multiple
concurrent executions. It would be most desirable to have cryptographic pro-
tocols retain their security properties even when executed concurrently. This
would enable the realization of cryptographic tasks in a way that preserves
security in a setting that is closer to the “real world”.

Unfortunately, security of a specific protocol in the stand-alone setting
does not necessarily imply its security in the (more demanding) concurrent
setting. It is thus of great relevance to examine whether the original feasibility
results for cryptographic protocols still hold when many copies of the protocol
are executed concurrently.
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2.1 Zero-Knowledge Proof Systems

In the course of developing tools for the design of complex cryptographic
tasks, many innovative notions have emerged. One of the most basic (and
important) examples for such notions is the one of zero-knowledge interactive
proofs. Interactive proofs, introduced by Goldwasser, Micali and Rackoff [72],
are efficient protocols that enable one party, known as the prover, to convince
another party, known as the verifier, of the validity of an assertion. In the pro-
cess of proving the assertion, the prover and the verifier exchange messages for
a predetermined number of rounds. Throughout the interaction, both prover
and verifier may employ probabilistic strategies and toss coins in order to
determine their next message. At the end of the process, the verifier decides
whether to accept or reject the proof based on his view of the interaction (as
well as on his coin-tosses).

The basic requirement is that whenever the assertion is true, the prover al-
ways convinces the verifier (this is called the completeness condition), whereas
if the assertion is false, then no matter what the prover does, the verifier is
convinced with very small probability, where the probability is taken over the
verifier’s coin-tosses (this is called the soundness condition).

An interactive proof is said to be zero-knowledge (ZK) if it yields nothing
beyond the validity of the assertion being proved. This is formalized by requir-
ing that the view of every probabilistic polynomial-time adversary interacting
with the prover can be simulated by a probabilistic polynomial-time machine
(a.k.a. the simulator). The idea behind this definition is that whatever an ad-
versary verifier might have learned from interacting with the prover, he could
have actually learned by himself (by running the simulator).

The concept of zero-knowledge was originally introduced by Goldwasser,
Micali and Rackoff [72]. The generality of ZK has been demonstrated by
Goldreich, Micali and Wigderson [65], who showed that every language in NP
can be proved in ZK, provided that one-way functions exist (cf. Naor [87],
H̊astad et al. [77]). Since then, ZK proof systems have turned out to be an
extremely useful tool in the realization of increasingly many cryptographic
tasks.

2.1.1 Concurrent Composition of ZK
The wide applicability of ZK proofs makes them a very useful “test case” for
examining the behavior of cryptographic protocols in the concurrent setting.
On the one hand, many of the difficulties that arise in the concurrent setting
already appear in the (relatively basic) case of ZK. On the other hand, positive
solutions for the case of ZK may translate to positive solutions for much more
complex cryptographic tasks (that use ZK protocols as a subroutine).

The scenario that is typically considered in the context of ZK involves a
single (or many) honest provers that are running many concurrent execu-
tions of the same ZK protocol. The honest prover is trying to protect itself



2.1 Zero-Knowledge Proof Systems 27

from a malicious adversary that controls a subset (or all) of the verifiers it is
interacting with. Since it seems unrealistic (and certainly undesirable) for hon-
est provers to coordinate their actions so that security is preserved, one must
assume that in each instance of the protocol the prover acts independently.

A ZK protocol is said to be concurrent zero-knowledge (cZK) if it remains
zero-knowledge in the above scenario. Recall that in order to demonstrate the
ZK property of a protocol it is required to demonstrate that the view of ev-
ery probabilistic polynomial-time adversary interacting with the prover can
be simulated in probabilistic polynomial-time. In the concurrent setting, the
verifiers’ view may include multiple sessions running at the same time. Fur-
thermore, the verifiers may have control over the scheduling of the messages
in these sessions (i.e., the order in which the interleaved execution of these ses-
sions should be conducted). As a consequence, the simulator’s task becomes
considerably more complicated.

2.1.2 On the Feasibility of cZK
Concurrent composition of ZK protocols was first mentioned by Feige [42].
A more extensive treatment was given by Dwork, Naor and Sahai [39], who
also argued that the task of proving the ZK property of a protocol in the
concurrent setting might encounter technical difficulties if approached in a
straightforward manner. The intuition from [39] was transformed into an im-
possibility result by Kilian, Petrank and Rackoff [83], who proved that “stan-
dard” (i.e., black-box simulation) techniques would fail in demonstrating the
cZK property of four-message protocols. This ruled out a large class of can-
didate protocols (which included most known constant-round ZK protocols).

For a while, it was not even clear whether cZK protocols exist. The feasi-
bility of cZK was first established by Richardson and Kilian [94], who showed
that every NP-statement can be proved in cZK. This was done by introduc-
ing a new class of protocols, and by showing how to simulate the verifiers’
view in multiple concurrent executions of these protocols.

2.1.3 The Round-Complexity of cZK
A bothersome property of the Richardson–Kilian solution was that the number
of messages in their proposed protocols was required to grow with the number
of concurrent executions (i.e., it had high round-complexity). This is in contrast
to the original (stand-alone) ZK protocols, which only required the exchange
of a constant number of messages. It thus became natural to ask whether the
high number of messages exchanged in the Richardson–Kilian protocol was
“inherent” to the notion of cZK, or whether it was possible to come up with
protocols that allowed for the exchange of fewer messages. Consequently, the
attention of research in the area has shifted towards the study of the round-
complexity of cZK.
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In the context of cZK, the round-complexity of a protocol is measured
as a function of some predetermined “security” parameter n ∈ N . The re-
quirement is that the protocol will remain secure as long as the number of
concurrent executions is bounded by some polynomial in n (we stress that
the protocol is constructed before the polynomial bound is determined). A
protocol is regarded as having “high” round complexity if the number of mes-
sages exchanged in this protocol depends on the value of n. This should be
contrasted to constant-round protocols in which the number of messages is
not required to increase as n grows.

The intensive focus on the round-complexity of cZK has resulted in an
almost full understanding of the round-complexity of black-box cZK protocols.
That is, protocols for which the cZK property is established via black-box
simulation. (Loosely speaking, a black-box simulator is a simulator that has
only black-box access to the adversary verifier.) The results obtained can be
summarized as follows:

• Assuming that statistically hiding commitments exist, every language in
NP has a cZK proof system with O(α(n) · log n) rounds of interaction,
where α(n) is any super-constant function. Moreover, the cZK property
of this proof system is proved using black-box simulation [93].

• Any cZK proof system for a language outside BPP, whose cZK property
is proved using black-box simulation, requires Ω(log n/ log log n) rounds of
interaction [30].

The above results are the main foci of this book. The first result is presented
in Chapter 5, whereas the second result is presented in Chapter 7.

The rest of the introduction is devoted to the presentation of the main tech-
nical difficulties that are encountered when trying to prove the cZK property
of a protocol using a black-box simulator. It also contains a more detailed
account of the developments that have led to the full characterization of the
round-complexity of black-box cZK, as well as of subsequent developments.

2.2 From Repetition to Composition

The notion of protocol composition should not be confused with that of pro-
tocol repetition. Whereas in the case of composition multiple executions of the
protocol are assumed to be conducted independently, in the case of repetition
the multiple executions are “linked” together. The assumed independence of
the executions is what makes protocol composition suitable for modelling the
behavior of interactive protocols in the “real world”. Protocol repetition, on
the other hand, is predominantly used in the context of error reduction (but
other uses are conceivable as well).

The difference between the above two notions is best understood through
the presentation of the “typical” construction of a ZK protocol for NP. The
presentation of such a construction also facilitates the understanding of the
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main technical difficulties that are encountered when trying to establish the
cZK property of a protocol via black-box simulation.

2.2.1 A “Typical” ZK Protocol for NP
A central tool in all known constructions of ZK protocols for NP is the one
of commitment schemes [87]. Commitment schemes are the “digital” analog
of sealed envelopes. They are used to enable a party, known as the sender, to
commit itself to a value while keeping it secret from the receiver (this property
is called hiding). Furthermore, the commitment is binding in the sense that
in a later stage, when the commitment is opened, it is guaranteed that the
“opening” can yield only a single value determined in the committing phase.

For our purposes, it will be convenient to think of commitments as a
non-interactive process in which the sender sends a single message to the
receiver (somewhat analogously to an encryption scheme). The sender can
then open the commitment by sending an additional message that reveals the
value committed to.

Constructing a ZK Protocol for NP. At a high-level, the typical ZK
protocol for NP is constructed by combining many atomic ZK protocols that
proceed as follows.1 Given a specific NP assertion, A, and a “proof” for the
validity of this assertion (typically, an NP-witness w for the validity of A),
the prover uses his coin-tosses to generate two (related) messages M0 and
M1 that depend on A and w. Letting P denote the prover and V denote the
verifier, the protocol proceeds as follows:

P → V : Commit to M0 and M1.
V → P : Send a random σ ∈ {0, 1}.
P → V : Reveal Mσ.

The verifier accepts if and only if the revealed message Mσ is “valid” (i.e., if it
passes a prespecfied validity inspection that is related to the commonly known
assertion A). To insure that the resulting protocol is indeed an interactive
proof, it is required that M0,M1 satisfy the following properties:

• If A is true, it is possible to make sure that both M0 and M1 are “valid”.
• If A is false, then no matter what P does, either M0 or M1 is “invalid”.

Thus if A is true then V always accepts, whereas if A is false then V accepts
with probability at most 1/2. (Here we rely on the binding property of the
commitment used by P .) To insure that the protocol is also ZK, the following
property is required:

• Given the value of σ, it is always possible to make sure that Mσ is “valid”.

1The type of protocols considered here resemble Blum’s protocol for Hamiltonic-
ity [18] (see Construction 4.1.1 on page 50), and not the protocol by Goldreich,
Micali and Wigderson for graph 3-coloring [65].
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Indeed, the soundness property of the protocol heavily relies on the fact that
P does not know the value of σ before the protocol starts (and so V can
always “surprise” P by choosing σ at random). Otherwise, P (knowing σ in
advance) would have always been able to make V accept in the protocol.

However, knowing σ in advance is the key for proving the ZK property
of the protocol. Consider an adversary verifier V ∗ that is trying to extract
knowledge from the interaction (by possibly deviating from the honest veri-
fier strategy). All that has to be done in order to simulate the view of V ∗ is
to let the simulator “guess” the value of σ in advance and generate M0,M1

so that Mσ is valid. The simulator can then “feed” V ∗ with a commitment to
M0,M1 and obtain the value of some σ′ that depends on this commitment.
If indeed σ′ = σ then the simulator has succeeded in his task and will output
a “valid” transcript in which V ∗ accepts. The hiding property of the com-
mitment guarantees us that, no matter what the strategy applied by V ∗, the
probability that σ′ = σ is 1/2. In particular, after two attempts the simula-
tor is expected to succeed in its task. Notice that the resulting simulator is
“black-box” in the sense that the only way in which V ∗’s strategy is used is
through the examination of its input/output behavior.

Reducing the Error via Repetition. To make the above protocol use-
ful, however, one must make sure that whenever A is false, V accepts only
with small probability (rather than 1/2). To achieve this, the atomic protocol
is repeated many (say, k) times independently. V accepts if and only if it
has accepted in all k repetitions. The probability of having V accept a false
statement is now reduced to 1/2k (by the independence of the repetitions).

The straightforward way to conduct the repetitions would be to per-
form the atomic protocols sequentially (i.e., one protocol after the other, see
Fig. 2.1a). This approach suffers from the drawback that the resulting protocol
has a fairly high round-complexity. To overcome this problem, the repetitions
may be conducted in parallel (i.e., the jth message of the atomic protocol is
sent together in all the k repetitions, see Fig. 2.1b).

(a) (b)

P V

=⇒⇐=
=⇒
=⇒⇐=
=⇒
...

=⇒⇐=
=⇒

P V

⇒ ⇒ . . . ⇒
⇐ ⇐ . . . ⇐
⇒ ⇒ . . . ⇒

Fig. 2.1. Sequential and parallel repetition.
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Unfortunately, repeating the protocol many times in parallel brings up the
following difficulty. Whereas in the case of a single execution, the probability
that the ZK simulator “guesses” the value of σ correctly is at least 1/2, the
probability that he does so simultaneously for all k repetitions is 1/2k. For
large k, this probability will be very small and might cause the simulator to
run for too long. Thus, it is not clear that the ZK property of the protocol is
preserved.

The solution to this problem is to let the verifier commit to all his “chal-
lenges” in advance. Specifically, consider the following protocol [62]:

V → P (v1): Commit to random σ1, . . . , σk ∈ {0, 1}.
P → V (p1): Commit to (M1

0 ,M1
1 ), (M2

0 ,M2
1 ), . . . , (Mk

0 ,Mk
1 ).

V → P (v2): Reveal σ1, . . . , σk.
P → V (p2): Reveal M1

σ1
,M2

σ2
, . . . ,Mk

σk
.

The verifier accepts if and only if for all j, the message M j
σ is “valid”. By

the hiding property of the commitment used in (v1), we are guaranteed that
when sending (p1), the prover P has “no idea” about the values of σ1, . . . , σk,
and so the soundness of the original protocol is preserved.

To see that the resulting protocol is ZK, consider the following simulation
technique. Start by obtaining the (v1) message from the verifier V ∗. Then,
playing the role of the prover, generate a sequence of k pairs {M j

0 ,M j
1}k

j=1

each containing “garbage” (i.e., not ncessarily “valid”). Feed V ∗ with the
commitments to these pairs and obtain the values of σ1, . . . , σk. Once these
values are obtained, “rewind” the interaction to Step (p1) and recompute the
values of {M j

0 ,M j
1}k

j=1 so that for all j, the value of M j
σj

is “valid”. Since we
have not rewound past (v1) (and thus did not modify its value), and since the
commitment used in (v1) is binding, we are guaranteed that when reaching
(v2) for the second time, the revealed values of σ1, . . . , σk are identical to the
ones revealed in the first time (v2) was reached (here we also use the fact
that the commitment used in (p1) is hiding and so V ∗ cannot distinguish a
commitment to “garbage” from a commitment to “valid” M j

σj
’s). Using the

values of the M j
σj

’s, the simulator can thus output a “valid” transcript in
which V ∗ accepts, as required.

But what if V ∗ refuses to reveal some (or all) of the committed values in
Step (v2)? (Recall that V ∗ may behave in any adversarial manner.) In such
a case, the simulator does not obtain all of the values of σ1, . . . , σk and will
supposedly fail in its task. Luckily, if V ∗ deviates from his prescribed strategy
and does not reveal some σj value in (v2), then the prover in the protocol
is not obligated to continue in the interaction (in particular, it aborts all k
repetitions altogether). Using this fact, it is then possible to show (with some
compications) that the simulator can eventually succeed in obtaining all of
the values σ1, . . . , σk and thus complete its task (cf. [62]).
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2.2.2 Composition of ZK Protocols

Protocol composition involves a single (or many) honest provers that are run-
ning many executions (sessions) of the same ZK protocol. Similarly to the
case of protocol repetition, in the case of protocol composition the honest
prover is trying to protect itself from a malicious adversary V ∗ that controls
a subset (or all) of the verifiers it is interacting with. However, unlike the
case of protocol repetition, the honest prover is not assumed to coordinate
its actions between different executions. As a consequence, a verifier in one
execution of the protocol is not held accountable for the “misbehavior” of a
verifier in another execution. Thus, even if the verifier refuses to reveal the
committed values in some of the executions, the prover is still obligated to
continue the interaction in the other executions. In particular, techniques used
for analyzing protocol repetition do not apply in the case of composition.

As in the case of repetition, composition of protocols is classified according
to the scheduling of messages amongst the various executions. The schedules
considered are sequential, parallel and concurrent.

Sequential and Parallel Composition. The most “basic” case of protocol
composition is the one of sequential composition (Fig. 2.2a). This case has
been treated in full generality by Goldreich and Oren [67], who showed that
any protocol that is (auxiliary input) ZK in a single execution will remain ZK
under sequential composition. A more complicated case is the one of parallel
composition (Fig. 2.2b). Here, a composition theorem is not known (and in
fact does hold in general [63, 42]). Still, as recently shown by Goldreich [59],
there exists a specific ZK protocol for NP (specifically, the protocol of [62])
that remains ZK under parallel composition.

(a) (b)

P V
(v1) ⇐=
(p1) =⇒
(v2) ⇐=
(p2) =⇒
(v1) ⇐=
(p1) =⇒
(v2) ⇐=
(p2) =⇒

...
(v1) ⇐=
(p1) =⇒
(v2) ⇐=
(p2) =⇒

P V

(v1) ⇐ ⇐ . . . ⇐

(p1) ⇒ ⇒ . . . ⇒

(v2) ⇐ ⇐ . . . ⇐

(p2) ⇒ ⇒ . . . ⇒

Fig. 2.2. Sequential and parallel composition of a four-round protocol.

Concurrent Composition. A more general notion of protocol composition
is the one of concurrent composition. Unlike the case of sequential and parallel
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composition (in which the scheduling of messages is defined in advance), the
scheduling of messages is controlled by the adversary verifier, who determines
the order in which the interleaved execution of the various sessions should
be conducted. As first observed by Dwork, Naor and Sahai [39], letting V ∗

control the scheduling and coordinate between sessions introduces technical
difficulties that black-box simulation does not seem to handle very well. In
light of these difficulties, it is not a priori clear that concurrent zero-knowledge
is at all achievable.

2.3 A Second Look at the Feasibility of cZK
2.3.1 A Troublesome Scheduling

The difficulties arising in the setting of concurrent zero-knowledge were first
observed when considering the scheduling of messages for a four-round proto-
col (originally suggested by Dwork, Naor and Sahai in [39]), shown in fig. 2.3.

1 2 n

(v1)
(p1)

⇐⇒
⇐⇒ . . .

⇐⇒
⇐⇒

. . .

⇐⇒
(v2)
(p2)

⇐⇒

Fig. 2.3. A concurrent schedule for n sessions of a four-round protocol.

In this scheduling, the prover starts by sending the first two messages
(i.e., (p1), (v1)) in all n sessions, only then proceeding to send the last two
messages (i.e., (p2), (v2)) in the reverse order of sessions (i.e., starting at the
nth session and ending at the first). Suppose now that an adversary verifier
V ∗ is sending messages according to the above schedule while applying the
following “coordinated” strategy for all n sessions:

• V ∗ produces the various verifier messages according to the honest verifier
strategy.

• The verifier coin-tosses used in a specific session depend on previous mes-
sages in the schedule.2

2For example, V ∗ could obtain random coins by applying a poly(n)-wise inde-
pendent hash function (or even a pseudorandom function) to the previous messages
in the schedule. This would imply that the modification of even one of the previous
messages yields “fresh” randomness for the current session.
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• Whenever V ∗ is not convinced in one session, he aborts the whole inter-
action altogether.3

Since the view of V ∗ consists of the concurrent interaction in all n sessions
in the schedule and since in each session V ∗ sends messages according to the
honest verifier strategy, the simulator’s task is to produce a transcript that
contains n sessions in which V ∗ accepts (notice that the honest prover P
would never cause V ∗ to reject, and so the simulator must do so as well).

The straightforward approach for simulation would be to use the four-
round protocol described above and let the simulator “rewind” the interac-
tion with V ∗ in each session (just as it has done in the “stand-alone” case).
However, by doing so the following problem is encountered. In order to suc-
ceed in the rewinding of the ith session, the simulator must obtain the (v2)
message in this session. Since by the above scheduling, this message occurs
after the end of session i′ for all i′ > i, the simulator has to make V ∗ accept
(and thus rewind) in all sessions i′ > i (otherwise, V ∗ would have aborted
the interaction at the moment session i′ ends, and the simulator would never
obtain (v2) in session i). Moreover, whenever the simulator rewinds session i,
it modifies the value of (p1) in this session. This causes the randomness of all
subsequent sessions (and so the verifier’s “challenges” in sessions i′ > i) to be
modified. In particular, the simulation work done for all sessions i′ > i is lost.
To conclude:

• The simulator must rewind all n sessions.
• To rewind session i, the simulator must rewind session i′ for all i′ > i.
• By rewinding session i, the work invested in sessions i′ > i is lost.

Denoting by W (m) the amount of work that the simulator invests in m
sessions, we obtain the recursion W (m) ≥ 2 · W (m − 1), which solves to
W (n) ≥ 2n (because W (1) = 2). This is clearly a too high running time for
the simulator to afford.

Transforming the Intuition into a Lower Bound: The above example
gives intuition to the difficulties that a “rewinding” simulator will encounter
in the concurrent setting. At first glance it may seem that this still leaves
open the possibility that an alternative black-box simulation technique might
be found. Unfortunately, the technique of rewinding the interaction with V ∗

turns out to be inherent to black-box simulation. (Intuitively, this follows
from the fact that rewinding is the only advantage that a black-box simulator
might have over the honest prover.) Using this fact, and building on the work
of Goldreich and Krawczyk [63], Kilian, Petrank and Rackoff [83] have been
able to transform the above argument into an impossibility result, and to
prove that for every language outside BPP there is no four-round protocol
whose concurrent execution is simulatable in polynomial-time using black-
box simulation. This impossibility result has been extended to seven rounds

3This behavior deviates from the honest verifier strategy, where the decision on
whether to reject or not is taken for each session independently of other sessions.
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by Rosen [97], and eventually raised to Ω(log n/ log log n) rounds by Canetti,
Kilian, Petrank and Rosen [30].

The latter result is presented in Chap. 7 of this book. It is obtained by
employing a new scheduling of messages (more sophisticated than the one
described in Fig. 2.3) and by having the adversary verifier V ∗ occasionally
abort sessions (i.e., refuse to continue the interaction) depending on the history
of the interaction thus far.

2.3.2 The Richardson–Kilian Protocol and Its Analysis

For a while, it was not even clear whether there exist cZK protocols for
languages outside of BPP. Several works have (successfully) attempted to
overcome the above difficulties by augmenting the communication model with
the so-called timing assumption [39, 41] or, alternatively, by using various
set-up assumptions (such as various public-key models [28, 34]). However, it
remained open whether “non-trivial” cZK is possible in a model where no
set-up assumptions are made (a.k.a. the plain model).

The feasibility of cZK in the plain model has been first established by
Richardson and Kilian (RK) [94], who exhibited a family of cZK protocols (pa-
rameterized by the number of rounds) for all languages in NP. The idea un-
derlying the RK protocol is to transform a given constant-round ZK protocol
into cZK by adding a k-round “preamble” to it. This preamble (i.e., messages
(V0), (P1), (V1), . . . , (Pj), (Vj)) is completely independent of the common in-
put and its sole purpose is to enable a successful simulation in the concurrent
setting. Every round in the preamble (i.e., every (Pj), (Vj) pair) is viewed
as a “rewinding opportunity”. Having “successfully rewound” even one of the
rounds in the preamble is sufficient in order to cheat arbitrarily in the actual
proof (i.e., messages (p1), (v1), (v2)) and thus complete the simulation. The
transformation is made possible through the usage of the well-known Feige–
Shamir paradigm [47, 48] (frequently referred to as the Feige–Lapidot–Shamir
(FLS) paradigm [46]).

P V(V0) ⇐=

(P1) =⇒
(V1) ⇐=
(P2) =⇒
(V2) ⇐=

...
(Pk) =⇒
(Vk) ⇐=

(p1) =⇒
(v1) ⇐=
(p2) =⇒

Fig. 2.4. The structure of the Richardson–Kilian k-round protocol.
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The RK transformation reduces the problem of proving that the result-
ing protocol is cZK to coming up with a simulator that, with overwhelming
probability, manages to successfully rewind every session in the concurrent
schedule (no matter what the strategy applied by the verifier). Clearly, the
larger the number of rounds in the preamble, the easier the simulation task
is. However, the main goal is to minimize the number of rounds in the pro-
tocol. The original analysis of the RK protocol showed how to simulate in
polynomial-time nO(1) concurrent sessions as long as the number of rounds in
the protocol is at least nε (for some arbitrary ε > 0). This implied that for
any ε > 0, every language in NP has an nε-round cZK proof system.

2.3.3 Improving the Analysis of the RK Protocol

The RK analysis has been subsequently improved by Kilian and Petrank [82],
who have employed a more sophisticated simulation technique (see Sects. 4.4
and 5.1.1) to show that the RK protocol remains concurrent zero-knowledge
even if it has O(α(n)·log2 n) rounds, where α(·) is any super-constant function
(e.g., α(n) = log log n). On a high level, the key idea underlying the Kilian–
Petrank simulation strategy is that the order and timing of the simulator’s
rewindings are determined obliviously of the concurrent scheduling (which is
determined “on the fly” by the adversary verifier). This is in contrast to the
RK simulation strategy which heavily depends on the schedule as it is being
revealed.

The Kilian–Petrank analysis was eventually improved by Prabhakharan,
Rosen and Sahai (PRS) [93], who conducted a more sophisticated analysis
of the Kilian–Petrank simulation technique, as well as presented a new cZK
protocol that is more amenable to analysis than the RK one. The improved
analysis established that O(α(n) · log n) rounds of interaction are in fact suffi-
cient for proving any language in NP in cZK. We note that the PRS analysis
is not restricted to their protocol, and could also be applied to the RK pro-
tocol (the main reason to analyze the former is that it admits a somewhat
simpler proof of security). The PRS proof is presented in Chap. 5.

2.3.4 What About Non-Black-Box Simulation?

In a recent breakthrough result, Barak [8] constructs a constant-round pro-
tocol for all languages in NP whose zero-knowledge property is proved us-
ing a non-black-box simulator. Such a method of simulation enables him to
prove results known impossible for black-box simulation. Specifically, for every
(predetermined) polynomial p(·), there exists a constant-round protocol that
preserves its zero-knowledge property even when it is executed p(n) times con-
currently (where n denotes the “security” parameter). As we show in Chap. 7,
even this weaker notion of concurrency is impossible to achieve when using
black-box simulation, unless NP ⊆ BPP.
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A major drawback of Barak’s protocol is that the (polynomial) number
of concurrent sessions relative to which the protocol should be secure must
be fixed before the protocol is specified. Moreover, the length of the messages
in the protocol grows linearly with the number of concurrent sessions. Thus,
from both a theoretical and a practical point of view, Barak’s protocol is
still not satisfactory. What we would like to have is a single protocol that
preserves its zero-knowledge property even when it is executed concurrently
for any (not predetermined) polynomial number of times. Such a property is
indeed satisfied by the Richardson–Kilian, and Prabhakharan–Rosen–Sahai
protocols [94, 82, 93].

2.4 Organization and the Rest of This Book

Below is a brief summary of the material presented in the various chapters of
the book. The central results are presented in Chaps. 5 and 7.

Chapter 3 – Preliminaries. Includes formal definitions of interactive
proofs, zero-knowledge and witness indistinguishability. Defines concurrent
zero-knowledge, as well as black-box concurrent zero-knowledge. Also speci-
fies some conventions that are used in the proofs of the lower bound and the
upper bound. Finally, defines the notion of bit-commitment, which will be
used in the constructions of the cZK protocols.

Chapter 4 – cZK Proof Systems for NP. Contains a full description of
the Richardson–Kilian and Prabhakharan–Rosen–Sahai protocols, as well as a
high-level exposition of the ideas underlying the simulation of these protocols
and its analysis in the concurrent setting. A full exposition of the simulation of
the Prabhakharan–Rosen–Sahai protocol (which implicitly contains an almost
full analysis of the Richardson–Kilian protocol) appears in Chap. 5.

Chapter 5 – cZK in Logarithmically Many Rounds. Contains a full
analysis of the PRS cZK protocol. As a consequence, every language in NP
can be proved in cZK using only O(α(n) · log n) rounds of interaction, where
α(n) is any super-constant function (Theorem 5.1). The PRS protocol retains
its zero-knowledge property no matter how many times it is executed con-
currently (as long as the number of concurrent sessions is polynomial in the
size of the input). By considering so-called zero-knowledge arguments, it is
also shown how to achieve a similar result assuming only the existence of one-
way functions (Theorem 5.3). The result presented in fact yields a generic
transformation that takes any “standard” ZK protocol and transforms it
into cZK while paying only a “logarithmic” penalty in the round-complexity
(Theorem 5.2). Additional results include the construction of a resettable ZK
protocol with “logarithmic” number of rounds (Theorem 5.4), and of cZK
arguments with polylogarithmic efficiency (Theorem 5.5).

Chapter 6 – A Simple Lower Bound. In this chapter we make a pre-
liminary step towards demonstrating that the protocol presented in Chap. 5
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is round-optimal (at least as far as black-box simulation is concerned). We
show that the cZK property of “non-trivial” 4-message protocols cannot be
demonstrated via black-box simulation. Chapter 6 can serve as a “gentle”
introduction to the considerably more complex result presented in Chap. 7.

Chapter 7 – Black-box cZK Requires Logarithmically Many Rounds.
The main result presented in this chapter is that Ω(log n/ log n log n) rounds
of interaction are essential for black-box simulation of cZK proof systems for
languages outside of BPP (Theorem 7.1). The lower bound that is presented
holds also for the case of cZK arguments. In fact, it will hold even if the
simulator knows the schedule in advance (in particular, it knows the number
of concurrent sessions, which may just equal the security parameter), and even
if the scheduling of the messages is fixed.

Chapter 8 - Conclusions and Open Problems. The chapter discusses the
issues arising from the known results on cZK, as well as some open problems
arising from Barak’s non-black-box simulation techniques [8]. We also suggest
investigating the round-complexity of cZK without aborts as an interesting
open–problem.
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Preliminaries

3.1 General

3.1.1 Basic Notation

We let N denote the set of all integers. For any integer k ∈ N , denote by [k]
the set {1, 2, . . . , k}. For any x ∈ {0, 1}∗, we let |x| denote the size of x (i.e.,
the number of bits used in order to write it). For two machines M,A, we let
MA(x) denote the output of machine M on input x and given oracle access to
A. The term negligible is used for denoting functions that are (asymptotically)
smaller than one over any polynomial. More precisely, a function ν(·) from
non-negative integers to reals is called negligible if for every constant c > 0
and all sufficiently large n, it holds that ν(n) < n−c.

3.1.2 Probabilistic Notation

Denote by x
r←X the process of uniformly choosing an element x in a set

X. If B(·) is an event depending on the choice of x
r←X, then Prx←X [B(x)]

(alternatively, Prx[B(x)]) denotes the probability that B(x) holds when x is
chosen with probability 1/|X|. Namely,

Prx←X [B(x)] =
∑

x

1
|X| · χ(B(x))

where χ is an indicator function so that χ(B) = 1 if event B holds, and equals
zero otherwise. We denote by Un the uniform distribution over the set {0, 1}n.

3.1.3 Computational Indistinguishability

Let S ⊆ {0, 1}∗ be a set of strings. A probability ensemble indexed by S is a
sequence of random variables indexed by S. Namely, any X = {Xw}w∈S is a
random variable indexed by S.
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Definition 3.1.1 (Computational indistinguishability) Two ensembles X =
{Xw}w∈S and Y = {Yw}w∈S are said to be computationally indistinguishable if
for every probabilistic polynomial-time algorithm D, there exists a negligible
function ν(·) so that for every w ∈ S:

|Pr [D(Xw, w) = 1] − Pr [D(Yw, w) = 1]| < ν(|w|)

The algorithm D is often referred to as the distinguisher. For more details on
computational indistinguishability see Sect. 3.2 of [56].

3.2 Interactive Proofs

We use the standard definitions of interactive proofs (and interactive Turing
machines) [72, 56] and arguments (a.k.a. computationally sound proofs) [23].
Given a pair of interactive Turing machines, P and V , we denote by 〈P, V 〉(x)
the random variable representing the (local) output of V when interacting
with machine P on common input x, when the random input to each machine
is uniformly and independently chosen.

Definition 3.2.1 (Interactive proof system) A pair of interactive machines
〈P, V 〉 is called an interactive proof system for a language L if machine V is
polynomial-time and the following two conditions hold with respect to some
negligible function ν(·):

• Completeness: For every x ∈ L,

Pr [〈P, V 〉(x) = 1] ≥ 1 − ν(|x|).

• Soundness: For every x �∈ L, and every interactive machine B,

Pr [〈B, V 〉(x) = 1] ≤ ν(|x|).

In case that the soundness condition is required to hold only with respect to a
computationally bounded prover, the pair 〈P, V 〉 is called an interactive argu-
ment system.

Definition 3.2.1 can be relaxed to require only soundness error that is
bounded away from 1−ν(|x|). This is so, since the soundness error can always
be made negligible by sufficiently many parallel repetitions of the protocol (as
such may occur anyhow in the concurrent model). However, in the context
of our lower bound, we do not know whether this condition can be relaxed
when dealing with computationally sound proofs (i.e., when the soundness
condition is required to hold only for machines B that are implementable
by poly-size circuits). In particular, in this case parallel repetitions do not
necessarily reduce the soundness error (cf. [15]).
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Definition 3.2.2 (Round-complexity) Let 〈P, V 〉 be an interactive proof sys-
tem for a language L and let r : N → N be an integer function. We say that
〈P, V 〉 has round-complexity r(·) if for every input x the number of messages
exchanged is at most r(|x|). In such a case, we sometimes refer to 〈P, V 〉 as
an r(·)-round interactive proof system.

3.3 Zero-Knowledge

An interactive proof is said to be zero-knowledge (ZK) if it yields nothing be-
yond the validity of the assertion being proved. This is formalized by requiring
that the view of every probabilistic polynomial-time adversary V ∗ interacting
with the honest prover P can be simulated by a probabilistic polynomial-
time machine SV ∗ (a.k.a. the simulator). The idea behind this definition is
that whatever V ∗ might have learned from interacting with P , he could have
actually learned by himself (by running the simulator S). The transcript of
an interaction consists of the common input x, followed by the sequence of
prover and verifier messages exchanged during the interaction. We denote by
viewP

V ∗(x) a random variable describing the content of the random tape of V ∗

and the transcript of the interaction between P and V ∗ (that is, all messages
that V ∗ sends and receives during the interaction with P , on common input
x).

Definition 3.3.1 (Zero-knowledge) Let 〈P, V 〉 be an interactive proof system
for a language L. We say that 〈P, V 〉 is zero-knowledge, if for every prob-
abilistic polynomial-time interactive machine V ∗ there exists a probabilistic
polynomial-time algorithm SV ∗ such that the ensembles {viewP

V ∗(x)}x∈L and
{SV ∗(x)}x∈L are computationally indistinguishable.

To make Definition 3.3.1 useful in the context of protocol composition,
Goldreich and Oren [67] suggested augmenting the definition so that the cor-
responding conditions hold also with respect to all z ∈ {0, 1}∗, where both
V ∗ and SV ∗ are allowed to obtain z as auxiliary input. Jumping ahead, we
comment that in the context of black-box simulation,, the original definition
implies the augmented one (i.e., any black-box ZK protocol is also ZK w.r.t.
auxiliary inputs). Since in this work we only consider the notion of black-box
ZK, we may ignore the issue of auxiliary inputs while being guaranteed that
all results hold with respect to the augmented definition as well.

3.4 Witness Indistinguishability

An interactive proof is said to be witness indistinguishable (WI) if the veri-
fier’s view is “computationally independent” of the witness used by the prover
for proving the statement. In this context, we focus our attention on languages
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L ∈ NP with a corresponding witness relation RL. Namely, we consider inter-
actions in which on common input x the prover is given a witness in RL(x).
By saying that the view is computationally independent of the witness, we
mean that for any two possible NP-witnesses that could be used by the prover
to prove the statement x ∈ L, the corresponding views are computationally
indistinguishable. Let V ∗ be a probabilistic polynomial-time adversary inter-
acting with the prover, and let viewP

V ∗(x, w) denote V ∗’s view of an interaction
in which the witness used by the prover is w (where the common input is x).

Definition 3.4.1 (Witness-indistinguishability) Let 〈P, V 〉 be an interac-
tive proof system for a language L ∈ NP. We say that 〈P, V 〉 is witness-
indistinguishable for RL, if for every probabilistic polynomial-time interactive
machine V ∗ and for every two sequences {w1

x}x∈L and {w2
x}x∈L, such that

w1
x, w2

x ∈ RL(x), the ensembles {viewP

V ∗(x,w1
x)}x∈L and {viewP

V ∗(x,w2
x)}x∈L

are computationally indistinguishable.

3.5 Concurrent Zero-Knowledge

Let 〈P, V 〉 be an interactive proof (resp. argument) for a language L, and
consider a concurrent adversary (verifier) V ∗ that, given input x∈L, interacts
with an unbounded number of independent copies of P (all on common in-
put x). The concurrent adversary V ∗ is allowed to interact with the various
copies of P concurrently, without any restrictions over the scheduling of the
messages in the different interactions with P (in particular, V ∗ has control
over the scheduling of the messages in these interactions). In order to control
the scheduling, the concurrent adversary V ∗ concatenates every message that
it sends with the session and round number to which the next scheduled mes-
sage belongs. The convention is that the reply sent by the prover should have
session and message indices as specified in the preceding verifier message (in
case it does not, the verifier V ∗ is allowed to reject the corresponding session).
As before, the transcript of a concurrent interaction consists of the common
input x, followed by the sequence of prover and verifier messages exchanged
during the interaction. We denote by viewP

V ∗(x) a random variable describing
the content of the random tape of V ∗ and the transcript of the concurrent in-
teraction between P and V ∗ (that is, all messages that V ∗ sends and receives
during the concurrent interactions with P , on common input x).

Definition 3.5.1 (Concurrent Zero-Knowledge) Let 〈P, V 〉 be an interac-
tive proof system for a language L. We say that 〈P, V 〉 is concurrent zero-
knowledge, if for every probabilistic polynomial-time concurrent adversary V ∗

there exists a probabilistic polynomial-time algorithm SV ∗ such that the ensem-
bles {viewP

V ∗(x)}x∈L and {SV ∗(x)}x∈L are computationally indistinguishable.

In the context of concurrent ZK, the round-complexity of a protocol is
measured as a function of some predetemined “security” parameter n ∈ N .
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The requirement is that the protocol will remain secure as long as the number
of concurrent executions is bounded by some polynomial in n (we stress that
the protocol is constructed before the polynomial bound is determined). In
this book, we use the convention that the “security” paramter n is equal (or
polynomially related) to |x|.

3.6 Black-Box Concurrent Zero-Knowledge

Loosely speaking, the definition of black-box zero-knowledge requires that
there exists a “universal” simulator, S, so that for every x ∈ L and every
probabilistic polynomial-time adversary V ∗, the simulator S produces a dis-
tribution that is indistinguishable from viewP

V ∗(x) while using V ∗ as an oracle
(i.e., in a “black-box” manner). Essentially, the definition of black-box simu-
lation says that the black-box simulator mimics the interaction of the prover
P with any polynomial-time verifier V ∗ relative to any random input r it
might choose. The simulator does so merely by using oracle calls to V ∗(x; r)
(which specifies the next message that V ∗ sends on input x and random input
r). The simulation is indistinguishable from the true interaction even if the
distinguisher (i.e., D) is given access to the oracle V ∗(x; r). For more details
see Sect. 4.5.4.2 of [57].

Before we proceed with the formal definition for the case of cZK, we will
have to overcome a technical difficulty arising from an inherent difference
between the concurrent setting and “stand-alone” setting. In “stand-alone”
zero-knowledge the length of the output of the simulator depends only on the
protocol and the size of the common input x. It is thus reasonable to require
that the simulator runs in time that depends only on the size of x, regardless
of the running time of its black-box. However, in black-box concurrent zero-
knowledge the output of the simulator is an entire schedule, and its length
depends on the running time of the concurrent adversary. Therefore, if we
naively require that the running time of the simulator is a fixed polynomial
in the size of x, then we end up with an unsatisfiable definition. (As for any
simulator S there is an adversary V ∗ that generates a transcript that is longer
than the running time of S.)

One way to solve the above problem is to have for each fixed polynomial
q(·), a simulator Sq that “only” simulates all q(·)-sized circuits V ∗. Clearly, the
running time of the simulator now depends on the running time of V ∗ (which
is an upper bound on the size of the schedule), and the above problem does not
occur anymore. Another (less restrictive) way to overcome the above problem
would be to consider a simulator Sq that “only” simulates all adversaries V ∗

which run at most q(|x|) sessions during their execution (we stress that q(·) is
chosen after the protocol is determined). Such simulators should run in worst-
case time that is a fixed polynomial in q(|x|) and in the size of the common
input x. In the sequel we choose to adopt the latter formalization.
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Definition 3.6.1 (Black-Box Concurrent Zero-Knowledge) Let 〈P, V 〉 be an
interactive proof system for a language L. We say that 〈P, V 〉 is black-box
concurrent zero-knowledge, if for every polynomial q(·), there exists a proba-
bilistic polynomial-time algorithm Sq, so that for every concurrent adversary
circuit V ∗ that runs at most q(|x|) concurrent sessions, Sq(x) runs in time
polynomial in q(|x|) and |x|, and satisfies that the ensembles {viewP

V ∗(x)}x∈L

and {SV ∗
q (x)}x∈L are computationally indistinguishable.

3.7 Conventions Used in Construction of Simulators

Deviation Gap and Expected Polynomial-Time Simulators. The de-
viation gap of a simulator S for a proof-system 〈P, V 〉 is defined as follows.
Consider a distinguisher D that is required to decide whether its input con-
sists of viewP

V ∗(x) or of the transcript that was produced by S. The deviation
gap of D is the difference between the probability that D outputs 1 given
an output of S, and the probability that D outputs 1 given viewP

V ∗(x). The
deviation gap of S is the deviation gap of the best polynomial-time distin-
guisher D. In our definitions of concurrent zero-knowledge (Definitions 3.5.1
and 3.6.1) the deviation gap of the simulator is required to be negligible in |x|.

For our lower bound, we allow simulators that run in strict (worst-case)
polynomial time, and have deviation gap at most 1/4. As for expected
polynomial-time simulators, one can use a standard argument to show that
any simulator running in expected polynomial time, and having deviation gap
at most 1/8 can be transformed into a simulator that runs in strict (worst-
case) polynomial time, and has deviation gap at most 1/4. In particular, our
lower bound (on simulators that run in strict polynomial time, and have de-
viation gap at most 1/4) extends to a lower bound on simulators running in
expected polynomial time (and have deviation gap as large as 1/8).

Query Conventions. In the lower bound presented in Chap. 7, k-round
protocols will consist of protocols in which 2k + 2 messages are exchanged
subject to the following conventions. The first message will be a fixed initiation
message by the verifier, denoted v1, which is answered by the prover’s first
message denoted p1. The following verifier and prover messages are denoted
v2, p2, . . . , vk+1, pk+1, where vk+1 is an ACCEPT/REJECT message indicating
whether the verifier has accepted its input, and the last message (i.e., pk+1) is
a fixed acknowledgment message sent by the prover.1 Clearly, any protocol in
which 2k messages are exchanged can be modified to fit this form (by adding
at most two messages).

Both in the lower bound and the upper bound, we impose the following
technical restrictions on the simulator (we claim that each of these restrictions

1The pk+1 message is an artificial message included in order to “streamline” the
description of the adversarial schedule (the schedule will be defined in Sect. 7.2.1).
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can be satisfied by any simulator): As in [63], the queries of the simulator are
prefixes of possible execution transcripts (in the concurrent setting).2 Such a
prefix is a sequence of alternating prover and verifier messages (which may
belong to different sessions as determined by the fixed schedule) that ends
with a prover message. The answer to the queries made by the simulator con-
sists of a single verifier message (which belongs to the next scheduled session),
and is determined by the output of the machine V ∗ when applied to the cor-
responding query (that is, the answer to query q is the message V ∗(q)). In
the case of the upper bound, we assume that the verifier’s answers are always
sent along with the identifiers of the next scheduled message (as determined
by V ∗). That is, every verifier message is concatenated with the session and
round number to which the next scheduled message belongs. In the case of the
lower bound, this is not necessary since we are considering a fixed scheduling
that is determined in advance and known to everybody. We assume that the
simulator never repeats the same query twice. In addition, we assume that be-
fore making a query q = (b1, a1, . . . , bt, at), where the a’s are prover messages,
the simulator has made queries to all relevant prefixes (i.e., (b1, a1, . . . , bi, ai),
for every i < t), and has obtained the bi’s as answers. Finally, we assume that
before producing output (b1, a1, . . . , bT , aT ), the simulator makes the query
(b1, a1, . . . , bT , aT ).

On the Simulator’s “Behavior”. Similarly to all known black-box simula-
tors, the simulator presented in Chap. 5 will go about the simulation task by
means of “rewinding” the adversary V ∗ to past points in the interaction. That
is, the simulator will explore many possible concurrent interactions with V ∗

by feeding it with different queries of the same length (while examining V ∗’s
output on these queries).3 As will turn out from our proof, before making a
query q = (p1, v1, . . . , vt−1, pt), where the p’s are prover messages, the simula-
tor will always make queries to all relevant prefixes (i.e., (p1, v1, . . . , vi−1, pi),
for every i < t), and will obtain the vi’s as answers. In addition, the simulator
will never make an illegal query (except with negligible probability). That is,
the simulator will always feed the verifier with messages in the prescribed for-
mat, and will make sure that the session and message numbers of any prover
message in the query are indeed consistent with the identifiers appearing in
the preceding verifier message. Actually, in order to succeed, the simulator
does deviate from the prescribed prover strategy (and indeed sends messages
that would have not been sent by an honest prover). However, it will do so in
a way that cannot be noticed by any probabilistic polynomial-time procedure
(unless computationally hiding commitments do not exist). What we actually
mean by saying that illegal queries are never made is that the simulator will

2 For sake of simplicity, we choose to omit the input x from the transcript’s
representation (as it is implicit in the description of the verifier anyway).

3Recall that every query made by the simulator corresponds to a specific execu-
tion transcript, and that the query’s length corresponds to the number of messages
exchanged so far.
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never send an ill-formed message (i.e., one that would cause an honest verifier
V to immediately reject the protocol).

Dealing with ABORT Messages. Since the adversary verifier V ∗ may arbi-
trarily deviate from the prescribed strategy, it may be the case that through-
out its interaction with the prover (simulator), V ∗ occasionally sends ill-
formed messages (in other words, V ∗ may potentially refuse to decommit
to a previous commitment). Clearly, such an action on behalf of the verifier
is considered illegal, and the interaction in the relevant session stops (i.e.,
there is no need to continue exchanging messages in this session). Without
loss of generality, such ill-formed messages are always interpreted as some
predetermined ABORT message. For the sake of concreteness, we assume that
whenever an ABORT message is sent by the verifier, the prover and verifier keep
exchanging ABORT messages until the relevant session is completed. We stress
that, as far as the prover (simulator) is concerned, illegal actions on behalf of
the verifier in one session do not have any effect on the interaction in other
sessions (since in the concurrent setting each prover/verifier pair is assumed
to act independently).

3.8 Commitment Schemes

Commitment schemes are used to enable a party, known as the sender, to
commit itself to a value while keeping it secret from the receiver (this property
is called hiding). Furthermore, the commitment is binding, and thus in a later
stage when the commitment is opened, it is guaranteed that the “opening”
can yield only a single value determined in the committing phase.

Perfectly Binding Commitment Schemes. In a perfectly binding com-
mitment scheme, the binding property holds even for an all-powerful sender,
while the hiding property is only guaranteed with respect to a polynomial-
time bounded receiver. For simplicity, we present the definition for a non-
interactive, commitment scheme for a single bit. String commitment can be
obtained by separately committing to each bit in the string.

We denote by Com(b; r) the output of the commitment scheme C upon
input b ∈ {0, 1} and using the random string r ∈R {0, 1}n (for simplicity, we
assume that Com uses n random bits where n ∈ N is the security parameter).

Definition 3.8.1 (Perfectly Binding Commitment) A perfectly binding
bit commitment scheme is a probabilistic algorithm Com satisfying the follow-
ing two conditions:

• Perfect binding: Com(0; r) �= Com(1; s) for every r, s ∈ {0, 1}n and n ∈ N .
• Computational hiding: The ensemble {Com(0; Un)}n∈N is computationally

indistinguishable from the ensemble {Com(1; Un)}n∈N .
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Non-interactive perfectly binding commitment schemes can be constructed
using any 1–1 one-way function (see Sect. 4.4.1 of [57]). Allowing some mini-
mal interaction (in which the receiver first sends a single message), (almost)
perfectly binding commitment schemes (a.k.a. statistically binding) can be
obtained from any one-way function [87, 77].

Perfectly Hiding Commitment Schemes. In a perfectly hiding commit-
ment scheme, the binding property is guaranteed to hold only with respect to
a probabilistic polynomial-time sender. On the other hand, the hiding prop-
erty is information-theoretic. That is, the distributions of commitments to 0
and commitments to 1 are identical (statistically close), and thus even an all-
powerful receiver cannot know the value committed to by the sender. We stress
that the binding property guarantees that a cheating probabilistic polynomial-
time sender can find only one decommitment, even though decommitments to
both 0 and 1 exist (which in particular means that an all-powerful sender can
always decommit both to 0 and to 1). See [57] (Sect. 4.8.2) for a full definition.

Perfectly hiding commitment schemes can be constructed from any one-
way permutation [88]. However, constant-round schemes are only known
to exist under stronger assumptions; specifically, assuming the existence of
collision-resistant hash functions [89, 35] or the existence of a collection of
certified clawfree functions [62] (see also [57], Sect. 4.8.2.3).
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cZK Proof Systems for NP

This chapter describes the construction of the Richardson–Kilian (RK) and
the Prabhakharan–Rosen–Sahai (PRS) cZK protocols (introduced in [94]
and [93] respectively). It also gives a high-level description of the ideas used
for the analysis of these protocols in the concurrent setting. A full analysis of
the PRS protocol (which implicitly contains an almost full analysis of the RK
protocol) appears in Chap. 5.

Both the RK and PRS protocols follow the same paradigm of adding a
“preamble” to some underlying constant-round protocol (cf. [94]). This pream-
ble is completely independent of the common input, and its sole purpose is
to enable a successful simulation in the concurrent setting. The two protocols
implement the above paradigm in different ways, where each of the approaches
has both advantages and disadvantages compared to the other. While the RK
approach has the advantage of being somewhat easier to describe, the PRS
approach is easier to analyze and yields more efficient protocols.

The approaches also differ in the properties required by the underlying
constant-round protocol. For the RK construction, it is required that the un-
derlying protocol is witness indistinguishable, whereas for the PRS construc-
tion, it is required that the protocol enables simulation whenever the verifier’s
“challenge” is known in advance (a.k.a. special simulation).

In our exposition we have chosen to make use of Blum’s Hamiltonicity
protocol (cf. [18]) as the underlying protocol for both the RK and PRS con-
structions. As it turns out, Blum’s protocol satisfies both the witness indis-
tinguishability and special simulation properties. This makes it suitable for
both constructions. We mention that the choice of Blum’s protocol is arbi-
trary, and is made only for convenience. In particular, Blum’s protocol could
be conceivably replaced by any constant-round protocol that satisfies either
one of the above properties.
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4.1 Blum’s Hamiltonicity Protocol

Blum’s protocol consists of n parallel repetitions of the following basic proof
system for the Hamiltonian Cycle (HC) problem. since HC is NP-complete
this yields a proof system for any language in NP [18, 57]. We consider di-
rected graphs (and the existence of directed Hamiltonian cycles).

Construction 4.1.1 (Basic proof system for HC)

Common input: a directed graph G = (V, E) with n
def
= |V |.

Auxiliary input to prover: a directed Hamiltonian cycle, C ⊂ E, in G.
Prover’s first step (p̂1): Select a random permutation, π, of the vertices V , and

commit (using a statistically-binding commitment scheme) to the entries of
the adjacency matrix of the resulting permuted graph. That is, send an n-by-n
matrix of commitments so that the (π(u), π(v))th entry is a commitment to
1 if (u, v) ∈ E, and is a commitment to 0 otherwise.

Verifier’s first step (v̂1): Uniformly select σ ∈ {0, 1} and send it to the prover.
Prover’s second step (p̂2): If σ = 0, send π to the verifier along with the revealing

(i.e., preimages) of all commitments. Otherwise, reveal only the commitments
to entries (π(u), π(v)) with (u, v) ∈ C. In both cases also supply the corre-
sponding decommitments.

Verifier’s second step (v̂2): If σ = 0, check that the revealed graph is indeed
isomorphic, via π, to G. Otherwise, just check that all revealed values are
1 and that the corresponding entries form a simple n-cycle. In both cases
check that the decommitments are proper (i.e., that they fit the corresponding
commitments). Accept if and only if the corresponding condition holds.

We start by showing that Construction 4.1.1 satisfies the special simulation
property. Namely if the prover knows the contents of verifier’s “challenge”
message σ (determined in Step (v̂1)) prior to sending its own first message
(determined in Step (p̂1)), then it is able to convince the verifier that G
contains a Hamiltionian cycle even without knowing such a cycle (actually, it
will convince the verifier even if the graph does not contain a cycle).

Claim 4.1.2 Construction 4.1.1 satisfies the special simulation property.

Proof Sketch Consider a single execution of Construction 4.1.1. We show
that if the prover knows σ in advance, it can set up its first message according
to σ in a way that will always make the verifier accept in Step (v̂2). Specifi-
cally, knowing in advance that σ = 0, the prover will commit to the entries of
the adjacency matrix of the permuted graph (as specified in Step (p̂1) of Con-
struction 4.1.1), thus being able to reveal a permutation π and the preimages
of all commitments in Step (p̂2). On the other hand, knowing in advance that
σ = 1, the prover will commit to the full graph Kn, thus being able to open
an arbitrary cycle in the supposedly permuted graph. The above argument
can be easily extended to the case of n parallel repetitions.
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Claim 4.1.3 ([18, 47, 57]) Construction 4.1.1 is witness indistinguishable.

Proof Sketch Observe that the special simulation property is in fact suffi-
cient in order to prove that a single execution of Construction 4.1.1 is (black-
box) zero-knowledge.1 All that the simulator has to do is to try and “guess”
the value of σ prior to determining the value of the prover’s first message
(and keep trying until it succeeds). Since ZK implies witness indistinguisha-
bility [57] then Construction 4.1.1 is WI. As for n parallel repetitions of
Construction 4.1.1, these are also WI since witness indistinguishability is
preserved under parallel repetition [57, 47].

4.2 The Richardson–Kilian cZK Protocol

The RK protocol consists of two stages. In the first stage, which is indepen-
dent of the common input, the verifier commits to k random n-bit strings,
v1, ..., vk ∈ {0, 1}n, where n is the “security” parameter of the protocol and k
is a special parameter that determines the number of rounds. This is followed
by k iterations so that in each iteration the prover commits to a random n-bit
string, pj , and the verifier decommits to the corresponding vj .

In the second stage, the prover provides a witness indistinguishable proof
that either the common input is in the language or that vj = pj for some
j ∈ {1, . . . , k}. Intuitively, since the latter case is unlikely to happen in an
actual execution of the protocol, the protocol constitutes a proof system for
the language. However, the latter case is the key to the simulation of the
protocol in the concurrent setting. Whenever the simulator may cause vj = pj

to happen for some i (this is done by the means of rewinding the verifier after
the value vi has been revealed), it can simulate the rest of the protocol (and
specifically Stage 2) by merely running the witness indistinguishable proof
system with vi (and the prover’s coins) as a witness.

The Actual Protocol. Consider the following NP-relation, denoted Rsim,
and its corresponding NP-language Lsim.

Construction 4.2.1 (The RK NP-relation Rsim)

Instance: a tuple 〈c1, . . . , ck, v1 . . . , vk〉.
Witness: an index j ∈ {1, . . . , k} and a pair of strings pj , rj ∈ {0, 1}n.
Relation: Rsim(〈c1, . . . , ck, v1, . . . , vk〉, 〈j, pj , rj〉) = 1 if and only if:

1. cj = Com(pj ; rj).
2. pj = vj.

Using Rsim, and Construction 4.1.1, the RK protocol proceeds as follows.
1This is in contrast to the protocol obtained by conducting n parallel repetitions

of the basic Hamiltonicity proof system (from Construction 4.1.1), which cannot be
proved to be black-box zero-knowledge (unless NP ⊆ BPP) [63].
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Construction 4.2.2 (The RK cZK proof system for HC)

Common input: a directed graph G = (V, E) with n
def
= |V |, and a parameter

k = k(n) (used for determining the number of rounds).
Auxiliary input to prover: a directed Hamiltonian Cycle, C ⊂ E, in G.
First stage: This stage involves 2k + 2 rounds and is independent of G.

1. Prover’s preliminary step (P0): Uniformly select a first message for a (two-
round) statistically hiding commitment scheme and send it to the verifier.

2. Verifier’s preliminary step (V0): Uniformly select a sequence, {vj}k
j=1, of

k random n-bit strings. Commit (using the statistically hiding commitment
scheme) to all k selected strings.

3. For j = 1, . . . , k:
a) Prover’s jth step (Pj): Uniformly select a random n-bit string rj and

send cj = Com(0n; rj) to the verifier (where Com denotes a statistically-
binding commitment).

b) Verifier’s jth step (Vj): Reveal the value of vj (by sending the decom-
mitment information for the corresponding commitment in (V0)).

4. The prover proceeds with the execution if and only if for every j ∈ {1, . . . , k},
the verifier has properly decommitted to the values of vj (i.e., that for every
j ∈ {1, . . . , k}, vj is a valid decommitment of βj).

Second stage: The prover and verifier engage in a witness-indistinguishable
proof of knowledge (e.g. n parallel executions of Construction 4.1.1) for the
OR of the following NP-statements:
1. G has a Hamiltonian cycle (i.e. G ∈ HC).
2. 〈c1, . . . , ck, v1 . . . , vk〉 ∈ Lsim.

Completeness. Completeness of Construction 4.2.2 follows from the perfect
completeness of the Hamiltonicity proof system. All that the prover has to
do in order to convince the verifier that G ∈ HC is to send an initialization
message for the statistically hiding commitments scheme, and k commitments
to the all-zero string, one commitment per each round in the first stage. As
for the second stage, since the prover knows a Cycle C ⊂ E in G, then no
matter what is the “challenge” sent by the verifier in Step (v1), the perfect
completeness of Construction 4.1.1 guarantees that the prover will be always
able to answer properly in Step (p2) (thus making the verifier accept).

Soundness. Soundness of Construction 4.2.2 follows from soundness of the
basic Hamiltonicity proof system, from the statistically-hiding property of the
commitment used by the verifier in Step (V0) and from the statistical binding
property of the commitments used by the prover in Steps (P1), . . . , (Pk).

Claim 4.2.3 Suppose that the commitment used in Step (V0) is statistically
hiding. Further suppose that the commitments used in Steps (P1), . . . , (Pk)
are statistically binding. Then, Construction 4.2.2 is sound.

Proof Sketch Suppose that the input graph G is not Hamiltonian. Since the
commitment scheme used by the verifier in Step (V0) is statistically hiding,
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we deduce that when reaching Step (Pj) the prover has “no idea” about the
value of vj that is about to be revealed in Step (Vj) (i.e., as far as the infor-
mation available to the prover is concerned each possibility is almost equally
likely). Thus, the value pj committed to by the prover in Step (Pj) is (al-
most) independent of the value of vj . As a consequence, when the interaction
reaches Stage 2 it is the case that with overwhelming probability pj �= vj

for all j ∈ {1, . . . , k}. Now, the commitment scheme used by the prover in
Step (Pj) is statistically binding, and so once the prover sends cj , the value
of pj is (almost) completely determined. This means that with overwhelm-
ing probability (over the verifier’s coin tosses) 〈c1, . . . , ck, v1 . . . , vk〉 �∈ Lsim. A
standard argument can be then used to demonstrate how a cheating prover
for Construction 4.3.1 is transformed into an (all-powerful) cheating prover
for Construction 4.1.1 (with only a negligible difference in the cheating proba-
bility), in contradiction to the soundness property of Construction 4.1.1.
We thus get:

Proposition 4.2.4 ([94]) Construction 4.2.2 constitutes an interactive proof
system for Hamiltonicity.

4.3 The Prabhakharan–Rosen–Sahai cZK Protocol

Similarly to the RK protocol, the PRS protocol consists of two stages. In
the first stage, which is independent of the actual common input, the verifier
commits to a random n-bit string σ, and to two sequences, {σ0

i,j}k
i,j=1, and

{σ1
i,j}k

i,j=1, each consisting of k2 random n-bit strings (this first message is
called the initial commitment of the protocol). The sequences are chosen under
the constraint that for every i, j the value of σ0

i,j ⊕ σ1
i,j equals σ. This is

followed by k iterations so that in the jth iteration the prover sends a random
k-bit string, rj = r1,j , . . . , rk,j , and the verifier decommits to σ

r1,j

1,j , . . . , σ
rk,j

k,j .
In the second stage, the prover and verifier engage in the three-round

protocol for Hamiltonicity (with soundness error 2−n), where the “challenge”
sent by the verifier in the second round of the Hamiltonicity protocol equals
σ (at this point the verifier also decommits to all the values σ, {σ1−ri,j

i,j }k
i,j=1

that were not revealed in the first stage).
Intuitively, since in an actual execution of the protocol, the prover does not

know the value of σ, the protocol constitutes a proof system for Hamiltonicity
(with soundness error 2−n). However, knowing the value of σ in advance allows
the simulation of the protocol: whenever the simulator may cause the verifier
to reveal both σ0

i,j and σ1
i,j for some i, j (as in the RK protocol, this is done by

the means of rewinding the verifier after the values σ
r1,j

1,j , . . . , σ
rk,j

k,j have been
revealed), it can simulate the rest of the protocol (and specifically Stage 2)
by adjusting the first message of the Hamiltonicity protocol according to the
value of σ = σ0

i,j⊕σ1
i,j (which, as we said, is obtained before entering Stage 2).
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The Actual Protocol. We assume the existence of commitment schemes
with security 2−k, where k ∈ N is an appropriately chosen “security” pa-
rameter. The parameter k is also used in order to determine the number of
rounds in the protocol. In principle, the security of the commitment schemes
does not have to be linked to the number of rounds. Indeed, the above choice
is arbitrary and was done only for convenience of presentation.

Construction 4.3.1 (The PRS cZK proof system for HC)

Common input: a directed graph G = (V, E) with n
def
= |V |, and a parameter

k = k(n) (used for determining the number of rounds, as well as the security
of the commitment schemes used in the protocol).

Auxiliary input to prover: a directed Hamiltonian cycle, C ⊂ E, in G.
First stage: This stage involves 2k + 2 rounds and is independent of G.

1. Prover’s preliminary step (P0): Uniformly select a first message for a (two-
round) statistically hiding commitment scheme and send it to the verifier.

2. Verifier’s preliminary step (V0): Uniformly select σ ∈ {0, 1}n, and two se-
quences, {σ0

i,j}k
i,j=1, {σ1

i,j}k
i,j=1, each consisting of k2 random n-bit strings.

The sequences are chosen under the constraint that for every i, j the value
of σ0

i,j ⊕ σ1
i,j equals σ. Commit (using the statistically hiding commit-

ment scheme) to all 2k2+1 selected strings. The commitments are denoted
β, {β0

i,j}k
i,j=1, {β1

i,j}k
i,j=1.

3. For j = 1, . . . , k:
a) Prover’s jth step (Pj): Uniformly select a k-bit string rj =

r1,j , . . . , rk,j ∈ {0, 1}k and send it to the verifier.
b) Verifier’s jth step (Vj): Reveal the values (preimages) of β

r1,j

1,j , . . . , β
rk,j

k,j .
4. The prover proceeds with the execution if and only if for every j ∈ {1, . . . , k},

the verifier has properly decommitted to the values of σ
r1,j

1,j , . . . , σ
rk,j

k,j (i.e.,

that for every i ∈ {1, . . . , k}, σ
ri,j

i,j is a valid decommitment of β
ri,j

i,j ).

Second stage: The prover and verifier engage in n (parallel) executions of a
slightly modified version of the basic Hamiltonicity protocol (described in
Construction 4.1.1):

1. Prover’s first step (p1): Send the first message in the Hamiltonicity proof
system (i.e., n parallel copies of Step (p̂1) in Construction 4.1.1).

2. Verifier’s first step (v1): Reveal the value (i.e., preimage) of β (which is
supposed to be equal to σ). Also reveal the value of all k2 commitments that

have not been revealed in the first stage (i.e., the values of all {β1−ri,j

i,j }k
i,j=1).

3. Prover’s second step (p2): Check that the verifier has properly decommited to

the values of σ and {σ1−ri,j

i,j }k
i,j=1 (in particular, check that σ0

i,j ⊕σ1
i,j indeed

equals σ for all j). If so, send the third message in the basic Hamiltonicity
proof system (i.e., n parallel copies of Step (p̂2) in Construction 4.1.1).

4. Verifier’s second step (v2): Conduct the verification of the prover’s proofs
(i.e., as described in Step (v̂2) of Construction 4.1.1), and accept if and
only if all corresponding conditions hold.
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Completeness. Completeness of Construction 4.3.1 follows from the perfect
completeness of the Hamiltonicity proof system. All that the prover has to
do in order to convince the verifier that G ∈ HC is to send an initialization
message for the statistically hiding commitments scheme, and k uniformly
and independently chosen k-bit strings, one string per each round in the first
stage (this can be done even without knowing a Hamiltonian cycle in G). As
for the second stage, since the prover knows a Hamiltionian cycle C ⊂ E in
G, then no matter what the “challenge” sent by the verifier in Step (v1) is,
the perfect completeness of Construction 4.1.1 guarantees that the prover will
be always able to answer properly in Step (p2).

Soundness. Soundness of Construction 4.3.1 follows from soundness of the
basic Hamiltonicity proof system, and from the statistically hiding property
of the commitment sent by the verifier in Step (V0).

Claim 4.3.2 Suppose that the commitment used in Step (V0) is statistically
hiding. Then, Construction 4.3.1 is sound.

Proof Sketch Suppose that the input graph G is not Hamiltonian. Observe
that no matter what the prover does, the k2 values, {σri,1

i,1 }k
i=1, . . . , {σ

ri,k

i,k }k
i=1,

which are revealed by the verifier in the first stage, are uniformly and inde-
pendently chosen (and so reveal no information about the actual value of σ).
Since the commitment scheme used by the verifier in Step (V0) is statistically
hiding, we deduce that when reaching Step (p1) the prover has “no idea”
about the value of the “challenge” σ that is about to be revealed in Step
(v2) (i.e., as far as the information available to the prover is concerned each
possibility is almost equally likely). In other words, even though the cheating
prover reaches the second stage (i.e., Step (p1)) after seeing all messages in
the first stage, the messages in the second stage are (almost) statistically in-
dependent of the verifier’s messages in the first stage. A standard argument
can be then used to demonstrate how a cheating prover for Construction 4.3.1
is transformed into an (all-powerful) cheating prover for Construction 4.1.1
(with only a negligible difference in the cheating probability), in contradiction
to the soundness property of Construction 4.1.1.
We thus get:

Proposition 4.3.3 ([93]) Construction 4.3.1 constitutes an interactive proof
system for Hamiltonicity.

4.4 Simulating the RK and PRS Protocols – Outline

We next give a high-level description of the ideas used to analyze the cZK
property of the PRS and RK protocols. Since the analysis of the RK proto-
col involves some complications that are not directly related to the issue of
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concurrency, we choose to focus our attention on the PRS protocol. A fully
detailed exposition of the analysis of the PRS protocol appears in Chap. 5.

Let (V0), (P1), (V1), . . . , (Pk), (Vk) denote the 2k + 1 first stage messages
in the PRS protocol and let (p1), (v1), (p2) denote the three (second stage)
messages in the Hamiltonicity proof system. Loosely speaking, the simula-
tor is said to rewind the the jth round if after receiving a (Vj) message, it
“goes back” to some point preceding the corresponding (Pj) message and
“re-executes” the relevant part of the interaction until (Vj) is reached again.

The simulator is said to successfully rewind the jth round, if it manages to
receive (Vj) as answer to two different (Pj) messages. Note that, once this
happens, the simulator has obtained both σ0

i,j and σ1
i,j for some i ∈ {1, . . . , k}.

Thus, if the simulator successfully rewinds even one of the rounds in the first
stage then it reveals the verifier’s “challenge” (which is equal to σ0

i,j ⊕ σ1
i,j).

Once the “challenge” is revealed, the simulator can cheat arbitrarily in the
second stage of the protocol.

To simplify the analysis, we let the simulator always pick the (Pj)’s uni-
formly at random. Since the length of the (Pj) messages is super-logarithmic,
the probability that any two (Pj) messages sent during the simulation are
equal is negligible.

Motivating Discussion. The binding property of the initial commitment
guarantees us that, once σ0

i,j and σ1
i,j have been revealed, the verifier cannot

“change his mind” and decommit to σ �= σ0
i,j ⊕ σ1

i,j at a later stage. However,
this remains true only if we have not rewound past the initial commitment.
As observed by Dwork, Naor and Sahai [39], rewinding a specific session in
the concurrent setting may result in rewinding past the initial commitment
of other sessions. This means that the “work” done for these sessions may be
lost (since once we rewind past the initial commitment of a session all σ

ri,j

i,j

values that we have gathered in this session become irrelevant). Consequently,
the simulator may find himself doing the same amount of “work” again.

The Richardson–Kilian Simulator [94]. The big question is how to design
a simulation strategy that will manage to overcome the above difficulty. One
possible approach would be to try and rewind every session at the location
that will “minimize the damage”. This is the approach taken in the original
analysis by Richardson and Kilian [94]. Specifically, for every specific session
(out of m concurrent sessions), there must be a j ∈ {1, . . . , k} so that at
most (m − 1)/k other sessions start in the interval corresponding to the jth

iteration (of this specific session). So if we try to rewind on the correct j,
we will invest (and so waste) only work proportional to (m − 1)/k sessions.
The idea is to avoid the rewinding attempt on the jth iteration if more than
(m − 1)/k sessions are initiated in the corresponding interval (this will rule
out the incorrect j’s). The same reasoning applies recursively (i.e., to the
rewinding in these (m − 1)/k sessions).

The drawback of this approach is that it works only when the number of
iterations in the preamble is polynomially related to the number of concurrent
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sessions. Specifically, denoting by W (m) the amount of work invested in m
sessions, we obtain the recursion W (m) = poly(m) ·W (m−1

k ), which solves to
W (m) = mΘ(logk m). Thus, whenever k = n, we get W (m) = mO(1), whereas
taking k to be a constant (or even poly-logarithmic) will cause W (m) to be
quasi-polynomial. Despite the apparent drawbacks, the RK simulation and
its analysis are important. This is mainly (but not only) due to the fact
that they were the ones originally used to establish the feasibility of cZK.
We also mention that the RK ideas also seem to be somewhat relevant to
the construction of cZK protocols with a quasi-polynomial time simulation
guarantee (a notion considered in [92], but not fully explored in the context
of cZK).

Theorem 4.1 ([94]) Suppose that there exist statistically hiding commitment
schemes. Then, for any ε > 0 there exists an nε-round black-box concurrent
zero-knowledge proof system for every language L ∈ NP.

The Kilian–Petrank Simulator [82]. A totally different approach is taken
by Kilian and Petrank (KP). Rather than concentrating on each session sep-
arately and decide on the rewindings according to the schedule as it is being
revealed, determine the rewindings obliviously of the concurrent scheduling
(which is determined “on the fly” by the adversary verifier). Specifically, the
order and timing of the simulator’s rewindings are determined recursively and
depend only on: (1) the length of the execution transcript determined so far;
(2) the total number of concurrent sessions (which, by definition, is deter-
mined prior to the simulation process). This is also the approach taken by
Prabhakharan, Rosen and Sahai [93].

The Rewinding Strategy. The rewinding strategy of the KP simulator is
specified by the solve procedure. The goal of the solve procedure is to supply
the simulator with V ∗’s “challenges” before reaching the second stage in the
protocol. As discussed above, this is done by rewinding the interaction with
V ∗ while trying to achieve two “different” answers to some (Vj) message.

The timing of the rewinds performed by the solve procedure depends
only the number of first stage verifier messages received so far (and on the
size of the schedule). For the sake of simplicity, we currently ignore second
stage messages and refrain from specifying the way they are handled. On a
very high level, the solve procedure splits the (first stage) messages it is
about to explore into two halves and invokes itself recursively twice for each
half (completing the two runs of the first half before proceeding to the two
runs of the second half).

At the top level of the recursion, the messages that are about to be explored
consist of the entire schedule, whereas at the bottom level the procedure
explores only a single message (at this level, the verifier message explored is
stored in a special “data structure”, denoted T ). The solve procedure always
outputs the sequence of “most recently explored” messages.
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The input to the solve procedure consists of a triplet (
, hist, T ). The pa-
rameter 
 corresponds to the number of verifier messages to be explored, the
string hist consists of the messages in the “most recently visited” history of in-
teraction, and T is a table containing the contents of all the messages explored
so far (to be used whenever the second stage is reached in some session).2

The simulation is performed by invoking the solve procedure with the
appropriate parameters. Specifically, whenever the schedule contains m =
poly(n) sessions, the solve procedure is invoked with input (m(k+1), φ, φ),
wherem(k+1) is the total number of first stage verifier messages in a schedule
of size m, and is assumed (without loss of generality) to be a power of 2. The
solve procedure is depicted in Fig. 4.1.

Procedure solve(
, hist, T ):
Bottom level (
 = 1):

1. If session s does not appear in hist, delete all session s messages from T .
2. Uniformly choose a first stage prover message p, and feed V ∗ with (hist, p).
3. Store V ∗’s answer v, in T .
4. Output T , (p, v).

Recursive step (
 > 1):

1. Set T1, (p̃1, ṽ1, . . . , p̃�/2, ṽ�/2) ←solve(
/2, hist, T ).
2. Set T2, (p1, v1, . . . , p�/2, v�/2) ← solve(
/2, hist, T1).
3. Set T3, (p̃�/2+1, ṽ�/2+1, . . . , p̃�, ṽ�)←solve(
/2, (hist, p1, v1, . . . , p�/2, v�/2), T2).
4. Set T4, (p�/2+1, v�/2+1, . . . , p�, v�)←solve(
/2, (hist, p1, v1, . . . , p�/2, v�/2), T3).
5. Output T4, (p1, v1, . . . , p�, v�).

Fig. 4.1. The rewinding strategy of the KP and PRS simulators. We stress that the
actual “work” is done at the bottom level of the recursion. Even though messages
(p̃1, ṽ1, . . . , p̃�, ṽ�) do not explicitly appear in the output, some of them (i.e., the
ones that are still “relevant”) do appear in the table T4. Notice that the timing of
the rewinds is oblivious of the scheduling.

4.5 Analyzing the Simulation – Outline

In order to prove the correctness of the simulation, it will be sufficient to show
that for every adversary verifier V ∗, the three conditions corresponding to the
following subsections are satisfied.

2The messages stored in T are used in order to determine the verifier’s “chal-
lenge” according to “different” answers to (Vj). They are kept “relevant” by con-
stantly keeping track of the sessions that are rewound past their initial commitment.
That is, whenever the solve procedure rewinds past the (V0) message of a session,
all messages belonging to this session are deleted from T (since, once this happens,
they become irrelevant to the rest of the simulation).
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4.5.1 The Simulator Runs in Polynomial Time

Each invocation of the solve procedure with parameter 
 > 1 involves four
recursive invocations of the solve procedure with parameter 
/2. In addition,
the work invested at the bottom of the recursion (i.e., when 
 = 1) is upper
bounded by poly(n). Thus, the recursive work W (m · (k +1)), that is invested
by the solve procedure in order to handle m · (k + 1) (first stage) verifier
messages satisfies W (m · (k + 1)) ≤ (m · (k + 1))2 · poly(n) = poly(n) (see
Sect. 5.2 for details).

4.5.2 The Simulator’s Output is “Correctly” Distributed

Indistinguishability of the simulator’s output from V ∗’s view (of m = poly(n)
concurrent interactions with P ) is shown assuming that the simulator does
not get “stuck” during its execution (see below). Since the simulator S will get
“stuck” only with negligible probability, indistinguishability will immediately
follow. The key for proving the above lies in the following two properties:

• First stage messages output by S are (almost) identically distributed to
first stage messages sent by P . This property is proved based on the def-
inition of the simulator’s actions. (We note that this property makes the
analysis simpler than that of the RK protocol.)

• Second stage messages output by S are computationally indistinguishable
from second stage messages sent by P . This property is proved based on
the special zero-knowledge property of the underlying protocol (in our
case, Blum’s Hamiltonicity protocol).

4.5.3 The Simulator (Almost) Never Gets “Stuck”

This is the most challenging part of the proof. What is required is to show that
whenever a session (out of m = poly(|x|) sessions in the schedule) reaches the
second stage in the protocol, the simulator has already managed to obtain
the value of the “challenge” σ corresponding to this session (at least with
overwhelming probability). We assume, for simplicity of presentation, that
the concurrent scheduling applied by V ∗ is fixed in advance (where by “fixed
schedule” we mean a schedule that does not vary “dynamically” as a function
of the messages that V ∗ has seen so far). The ideas for coping with “dynamic”
schedulings are presented in Chap. 5.

Partitioning the Schedule into Rewind Intervals. The execution of the
solve procedure induces a partitioning of the 2·m ·(k+1) (prover and verifier)
messages in the schedule into disjoint rewind intervals. At the top level of the
recursion there are two disjoint intervals of length m ·(k+1) and at the bottom
of the recursion there are m · (k+1) disjoint intervals of length 2. In general,
at the wth level of the recursion (out of d = log2(m · (k+1)) possible levels)
there are 2w disjoint intervals of m(k + 1)/2w+1 messages each.
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Notice that rewind intervals may contain messages from all sessions. Also
notice that a rewind interval may be “visited” multiple times during the ex-
ecution of the solve procedure (a level-w interval is visited exactly 2w times
during the simulation). The fixed schedule assumption implies that each time
an interval is “visited” it will contain the same scheduling of messages.

Minimal Rewind Intervals. We denote by [a, b] an interval starting with
prover message a and ending with verifier message b. Focusing on messages
of a specific session, we note that for every pair of messages (Pj), (Vj) in this
session we can associate a level-w interval [aj , bj ] so that:

1. Both (Pj) and (Vj) are contained in [aj , bj ].
2. None of the level-(w + 1) sub-intervals of [aj , bj ] contains both (Pj) and

(Vj).

We call such a rewind interval a j-minimal interval. Notice that for every
j ∈ {1, . . . , k} there is only one j-minimal interval [aj , bj ] (and that for every
j �= j′ the interval [aj , bj ] is different from [aj′ , bj′ ]).

 aj−1  [
(P(j−1)) � [
(V(j−1))  [

�bj−1
� [

(Pj) aj+1 aj [
(Vj)
(P(j+1)) �bj

[
 [

(V(j+1)) � �bj+1
� [

Fig. 4.2. Demonstrates the way in which minimal intervals are determined. Also
demonstrates possible containments between minimal intervals of different itera-
tions. In this example, the intervals [aj−1, bj−1] and [aj+1, bj+1] are disjoint (as well
as the intervals [aj−1, bj−1] and [aj , bj ]), whereas the interval [aj+1, bj+1] contains
[aj , bj ].

In some sense j-minimal intervals correspond to the shortest interval in
which the simulator can rewind message (Vj) (that is, while potentially chang-
ing the value of (Pj)). Intuitively, for such a rewinding to be useful, the interval
should not contain message (V0). Otherwise, the value that was revealed in
some run of the interval becomes irrelevant once the rewinding is performed
(since all the relevant values in the T table are deleted whenever we rewind
past (V0)). Likewise, the interval should not contain message (p1). Otherwise,
the simulation faces the risk of getting “stuck” before it manages to reveal
multiple (Pj), (Vj) pairs of messages (by running the interval twice).
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To rule out the above possibilities we focus on j-minimal intervals that
contain neither (V0) nor (p1) (such intervals are called good). It can be seen
that the number of minimal intervals that contain neither (V0) nor (p1) is at
least k− 2d. This just follows from the fact that in every level the (V0) (resp.
(p1)) message is contained in exactly one interval. In particular, the number
of minimal intervals that are “spoiled” by (V0) (resp. (p1)) is at most d.

At this point, the simulator’s task may seem easy to achieve. Indeed, if V ∗

acts according to the prescribed verifier strategy, then all that the simulator
has to do is to run a good interval twice.3 Since V ∗ is acting honestly, we are
guaranteed that, with overwhelming probability, in each of the two runs the
simulator obtains a “different” (Vj) message. In such a case, it will be sufficient
to require that there exists a good interval. By the above discussion this is
guaranteed whenever k > 2d (and since d = O(log n), setting k = w(log n)
will do).

Dealing with ABORT Messages: Unfortunately, the adversary verifier V ∗

may arbitrarily deviate from the prescribed strategy. In particular, it may
be the case that throughout its interaction with the prover (simulator), V ∗

occasionally sends an ABORT message (in other words, V ∗ may potentially
refuse to decommit to a previous commitment). Clearly, such an action on
behalf of the verifier is considered illegal, and the interaction in the relevant
session stops (i.e., there is no need to continue exchanging messages in this
session). This may seem as good news (since, once this happens, the simulator
does not really need to “invest” any more work in the corresponding session).

The problem is that V ∗ does not always refuse to decommit (but may
refuse with some probability 0 ≤ p ≤ 1, which is not known in advance by the
simulator). Thus, if we focus on two consecutive runs of a specific interval, the
simulator may find himself in a situation in which the first run is answered
with ABORT whereas the second run of the interval is “properly answered”.
This means that the simulator has not managed to obtain the “challenge”
from the two runs of this interval, and it thus faces the risk of getting “stuck”
at a later stage of the interaction.

One näıve solution would be to let the simulator always output the run in
which V ∗ has refused to decommit (that is, whenever it gets “stuck”). The
problem with this solution is that it “skews” the distribution of transcripts
outputted by the simulator towards transcripts that contain too many ill-
formed messages. This may cause a too large deviation of the simulator’s
output distribution from the distribution of “real” interactions (between V ∗

and the honest prover P ).
Another possible solution (which is the one used in the current analysis)

would be to let the simulator always output the “most recently explored”
run. This choice guarantees that the simulator indeed produces the “correct”
distribution of first stage messages (in the sense discussed above). However

3Observe that whenever [aj , bj ] is reached during the simulation then it is run
twice.
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it makes him face the risk that V ∗ aborts in the first run of an interval and
“properly answers” in the second run.

Achieving “Independent” Rewinds. Let pj denote the probability that
V ∗ sends a “proper” (Vj) message. Using this notation, the probability that
V ∗ aborts in the first run of [aj , bj ] but “properly answers” in the second run
is equal to (1 − pj) · pj ≤ 1/4 (we call this a “bad” event). Let k′ < k be the
number of good intervals in the simulation. At first glance, it may seem that
the probability of the above “bad” event to occur in all good intervals is upper
bounded by (1/4)k′

(which means that the probability of getting “stuck” is
negligible whenever k′ = ω(log n)).

However, this reasoning applies only when all runs of the good intervals
are independent. Unfortunately, very strong dependencies may exist between
different good intervals. This will happen whenever one good interval contains
another good interval. In such a case, aborting in the first run of one interval
may immediately imply abort in the first run of the other interval.

The solution is to focus on a set of disjoint intervals. Such intervals do
not suffer from the dependencies described above, and can be shown to be
“bad” independently from other (disjoint) intervals. The abundance of disjoint
intervals can be easily guaranteed by taking k sufficiently large. Specifically, if
k = ω(log2 n), then there must exist a level in the recursion (out of d = log(m·
(k+1)) = O(log n) levels) that contains at least k′ = ω(log2 n)/d = ω(log n)
good intervals. Since same level intervals are all disjoint, then their runs are
“independent.” In particular, the probability that for all of them the “bad”
event will occur is negligible. This yields the following theorem (due to Kilian
and Petrank).

Theorem 4.2 ([82]) Suppose that there exist statistically hiding commitment
schemes, and let α : N → N be any super-constant function. Then, there exists
an O(α(n)·log2 n)-round black-box concurrent zero-knowledge proof system for
every language L ∈ NP.

The above result yields a dramatic improvement over the Richardson–
Kilian original analysis, but still falls short of obtaining optimal (namely log-
arithmic) round-complexity. In order to further reduce the number of rounds
to O(α(n) · log n) several new ideas are required. These ideas were introduced
by Prabhakharan, Rosen and Sahai [93], and are presented next.

Special Intervals. Unfortunately, the above argument (establishing the
abundance of disjoint intervals) does not extend to the case when k =
Õ(log n). Here we are not guaranteed that there exists a level with many
good intervals. In fact, there may exist only few (i.e., k′ = o(log n)) disjoint
intervals. To overcome this obstacle, we use a completely different approach.
Rather than proving the existence of a large set of disjoint intervals (each be-
ing executed twice), we prove the existence of a (possibly small) set of disjoint
intervals and guarantee that the total number of executions of these intervals
is large. By doing so, we exploit the fact that, from the time that (V0) is
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visited until the time that (p1) is reached, the simulator typically visits each
rewinding interval many times (and not just twice as we assumed before).

Specifically, for every scheduling applied by V ∗, we define our set of inter-
vals as the set of all minimal intervals that do not contain any other minimal
interval (i.e., intervals [aj , bj ] that do not contain [aj′ , bj′ ] for any j′ �= j).
We call such intervals special intervals. Notice that all special intervals are
disjoint. We let S ⊆ {1, . . . , k} denote the set of all indices j for which [aj , bj ]
is special. For simplicity, assume that S = {1, . . . , |S|}.

Our goal will be to bound (from below) the total number of times that
special intervals are visited. To do so, we introduce a notion of “distance”
between consecutive special intervals. This “distance” is supposed to reflect
the number of times that a certain special interval has been executed since
the last time that the preceding special interval has been visited. For every
j ∈ S, we let dj denote the “distance” of [aj , bj ] from [aj−1, bj−1].4 Using this
definition we show that, no matter what the scheduling strategy applied by
V ∗ is, the following two conditions are always satisfied:

1. The number of “independent” runs of [aj , bj ] since [aj−1, bj−1] has been
last visited is 2dj .

2.
∑

j∈S dj ≥ k − d.

Loosely speaking, item 1 follows from the definition of dj and from the fact
that [aj , bj ] and [aj−1, bj−1] are disjoint. As for item 2, this is a combinatorial
statement on binary trees, which is proved by induction on the number of
minimal intervals in the “recursion tree”.

Bounding the Failure Probability. Recall that we are interested in the
probability that the “bad” event occurs during the simulation. Whereas in
the previous analysis, this happened only if for all intervals the first run was
aborted and the second was “properly answered”, in the current analysis the
simulator will fail only if for every j ∈ {1, . . . , |S|}, it holds that the first 2dj −1
runs of the interval [aj , bj ] are aborted and the last one is “properly answered”
(since otherwise the simulator has managed to obtain two “different” answers
to (Vj)).

Let R be the set of all random tapes used by the simulator. A specific
ρ ∈ R is said to be “bad” if the “bad” event occurs during a simulation that
uses ρ as random tape (if the “bad” event does not occur during the simulation
then ρ is called “good”). We shall show that the fraction of “bad” tapes ρ ∈ R
is negligible. To do this we will show that every “bad” random tape can be
mapped into a set of super-polynomially many other “good” random tapes so
that every two “bad” random tapes are mapped to two disjoint sets of “good”
random tapes. This would imply that for every random tape that leads to the
simulator’s failure there exist super-polynomially many other tapes that do

4The value dj is defined as the “recursive depth” of [aj , bj ] relative to the “com-
mon ancestor” of [aj , bj ] and [aj−1, bj−1] (i.e., relative to the smallest rewind interval
containing both [aj , bj ] and [aj−1, bj−1]).
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not. Since the simulator picks a random tape uniformly amongst all possible
random tapes, it follows that the simulator’s failure probability is negligible.

Mapping a “Bad” Random Tape to Many “Good” Tapes. Let
u1, . . . , u|S| (where for every j ∈ {1, . . . , |S|}, the value of uj is chosen in
{1, . . . , 2dj}). We map a random tape ρ ∈ R into another random tape ρ′ ∈ R
by swapping the portion of ρ used to produce prover messages in the uth

j run
of [aj , bj ] with the portion used in the (2dj )th run (this is done for all j ∈ S).
The swappings are made possible due to the following facts: (1) Prover mes-
sages in interval [aj , bj ] are produced using “fresh” randomness each time it
is visited. (2) If two intervals [aj , bj ] and [aj′ , bj′ ] are disjoint then so is the
randomness used to produce their corresponding prover messages (recall that
all special intervals are disjoint).

We claim that if ρ is a “bad” random tape, then after the swappings
have been applied, the resulting tape ρ′ is “good”. To see this, consider the
smallest j ∈ S for which uj �= 2dj (i.e., for which the uth

j run of [aj , bj ] and the
(2dj )th run have been actually swapped). The key observation is that, once
the swappings have been applied to ρ, the last run of [aj , bj ] is aborted (and
one of the first 2dj − 1 runs is “properly answered”).5 In other words, there
exists a j ∈ S for which the “bad” event does not occur during the simulation
(and so ρ′ is “good”).6

The above argument will apply as long as the sequence u1, . . . , u|S| causes
the randomness of at least one special interval to be swapped. The number of
possibilities to choose u1, . . . , u|S| so that this happens (i.e., the randomness
of at least one special interval is swapped) is:∏

j∈S

2dj − 1 = 2
∑

j∈S
dj − 1 ≥ 2k−d − 1

(the sequence u1, . . . , u|S| = 2d1 , . . . , 2d|S| being the only one that leaves the
coin tosses intact). Overall, we get that a single “bad” random tape ρ ∈ R can
be mapped to as many as 2k−d − 1 other “good” random tapes. As we show
below, any two such “bad” tapes will be mapped to disjoint sets of “good”
tapes and so the fraction of “bad” random tapes is at most 2k−d = 2k−O(log n).
Thus, whenever k = ω(log n), the probability that the simulator gets “stuck”
is negligible.

Defining an “Inverse” Mapping. To argue that any two “bad” random
tapes are mapped to disjoint sets of “good” tapes we will define an “inverse”

5Here we rely on the fact that the simulator’s coin tosses completely determine
the outcome of an interval’s run (that is, modulo the history of the interaction up
to the starting point of the interval).

6To see that the simulator does not get “stuck” when using ρ′ as its random
tape, notice that when reaching the second stage of the corresponding session, the
simulator will not have to do anything in order to successfully produce a second
stage transcript (since all second stage messages should appear as being aborted
anyway).
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to the above mapping. To do this, we should be able, given a “good” random
tape ρ′ ∈ R, to determine the value of uj for every j ∈ {1, . . . , |S|} (that is,
we should be able to determine with which run of [aj , bj ] the last run was
swapped).

In order to determine the value of the uj ’s we will run the simulation with
ρ′ as random tape and examine for which special intervals one of the first
2dj − 1 runs is “properly answered” and the last run is aborted by V ∗. Once
uj is determined for some interval, we will swap back its randomness and
continue to inspect and swap the next special interval.

If we take care of inspecting the intervals and reversing the swapping of
their randomness “inductively”, we are guaranteed that for every interval
that we are examining exactly one of the runs is “properly answered” and
the others are aborted. Loosely speaking, this follows from the fact that the
“good” tape that we are trying to invert originates from a “bad” tape in which
every interval is aborted in the first 2dj − 1 runs and “properly answered” in
the last run.

The reason why the order of swapping is important is that V ∗’s answer in a
specific interval also depends on the randomness used to run the “most recent
execution” of previous intervals (since, whenever we reach a specific interval,
the outcome of these “recent” runs appears in the history of the interaction).
In order to be able to say something meaningful about an interval’s run we
must make sure that, whenever we inspect the run of the simulator on this
interval, the history of the interaction up to the starting point of the interval
is consistent with the outcome of running the simulator with the “bad” tape
that we are aiming to obtain.

As soon as we reach the last special interval we know that the resulting
tape is the original “bad” random tape (since all along the way we preserve
the “invariant” that the randomness used so far is consistent with the original
“bad” random tape).
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cZK in Logarithmically Many Rounds

This chapter contains a full analysis of the PRS protocol. Specifically, assum-
ing the existence of statistically hiding commitment schemes, it is shown that
every language in NP can be proved in cZK using (essentially) logarithmi-
cally many rounds of interaction. This is stated in the following theorem.

Theorem 5.1 ([93]) Suppose that there exist statistically hiding commitment
schemes, and let α : N → N be any super-constant function.1 Then, there ex-
ists an O(α(n) · log n)-round black-box concurrent zero-knowledge proof system
for every language L ∈ NP.

The proof of Theorem 5.1 is based on the work of Prabhakharan, Rosen and
Sahai [93], which in turn builds on the protocol by Richardson and Kilian [94]
and on the simulator by Kilian and Petrank [82]. The PRS analysis of the
simulator’s execution is more sophisticated than the KP one and thus yields
a stronger result. It involves a novel counting argument that involves a direct
analysis of the underlying probability space. This is in contrast to the previous
approaches that involved subtle manipulations of conditional probabilities.

Our exposition of the proof follows the high-level analysis presented in
Chap. 4. Due to the complexity of the material, it is advised to go over the
high level analysis before actually delving into the details of the proof.

5.1 Detailed Description of the Simulator

In order to demonstrate the concurrent zero-knowledge property of Construc-
tion 4.3.1, we will show that for every polynomial p(·) there exists a “universal”
black-box simulator, Sp, so that for every G = (V,E) ∈ HC and concurrent
adversary verifier V ∗ (running at most p(|V |) concurrent sessions), Sp(G) runs
in time poly(n) (where n = |V |), and so that the ensemble {viewP

V ∗(G)}G∈HC

is computationally indistinguishable from the ensemble {SV ∗
p (G)}G∈HC .

1α : N → N is super-constant if for any c > 0 there exists nc ∈ N so that for all
n > nc it holds that α(n) > c.
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5.1.1 The Main Procedure and Ideas

We assume that the number of sessions that are run by the concurrent ad-
versary verifier V ∗ is fixed in advance and known to everybody. We denote it
by m (= poly(n)). The simulator Sm starts by selecting and fixing a random
tape r for V ∗. It then proceeds by exploring various prefixes of possible inter-
actions between P and V ∗. This is done while having only “black-box” access
to V ∗’s strategy (as described in Sect. 3.7). For simplicity of presentation, we
partition the description of the simulator’s strategy into two disjoint (but not
independent) procedures. The first procedure handles the messages that are
exchanged in the first stage of the protocol. This is done while completely
ignoring the messages of the second stage. The second procedure handles the
messages in the second stage while using auxiliary information produced by
the first procedure. This information is located in some “global” data struc-
ture that is dynamically updated (by the first procedure) as the simulation
proceeds. To complete the simulator’s description we describe how the two
procedures can be merged into one super-procedure that with overwhelming
probability outputs a “legal” transcript (representing a concurrent interaction
between P and V ∗). The analysis of the simulator’s running time and output
distribution are then presented in Sects. 5.2, 5.3 and 5.4.

Handling First-Stage Messages

First-stage messages are handled by the solve procedure. The goal of this
procedure is to supply the simulator with the values of V ∗’s “challenges”
before it reaches the second stage in the protocol (where by “challenges” we
refer to messages σ that correspond to Step (v1) of Construction 4.3.1). To
this end, the solve procedure tries to make sure that for every session (out
of m concurrent sessions) there exists i, j ∈ {1, . . . , k} × {1, . . . , k} for which
the verifier V ∗ has properly revealed the values of both σ0

i,j and σ1
i,j (during

the simulation process). This should always take place prior to reaching the
second stage of the corresponding session (or otherwise, the simulator will
get “stuck”). Once both σ0

i,j and σ1
i,j are revealed, the value of V ∗’s challenge

(which should be equal to σ0
i,j⊕σ1

i,j) can be easily determined, and the required
goal is indeed achieved.

In order to receive both σ0
i,j and σ1

i,j (i.e., in some (Vj) message of a
specific session), the simulator must explore at least two different interaction
prefixes in which the corresponding (Pj) message is different. The way this
is done is by means of “rewinding” the interaction with V ∗ to a point in the
schedule that precedes the (Pj) message (while hoping that the (Pj) message
is indeed modified in the process).2

2Note that great care should be taken in planning the rewinding strategy. As
we have previously mentioned, rewinding a specific session in the concurrent setting
may result in loss of work done for other sessions, and cause the simulator to do
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The rewinding strategy of the solve procedure is recursive and is essen-
tially identical to the simulation strategy suggested by Kilian–Petrank [82].
The key idea underlying this simulation strategy is that the order and tim-
ing of the simulator’s rewinds are determined obliviously of the concurrent
scheduling (which is determined “on the fly” by the adversary verifier V ∗).
Specifically, the order and timing of the rewinds depend only on m, the num-
ber of concurrent sessions (which, by definition, is determined prior to the
simulation process), and on the length of the execution prefix explored so far.3

The “Global” Data Structure. To store the values it has discovered about
the verifier’s “challenge” in session s ∈ {1, . . . ,m}, the solve procedure will
write information into a table denoted T . This table will contain the (first
stage) verifier messages that have been revealed so far (such messages may
consist of the opened values of some {σrj

i,j}k
i=1’s or, alternatively, of an ABORT

message). As we have already mentioned, “rewinds” that take place during the
simulation process may render part of the data stored in the T table irrelevant.
In particular, whenever the interaction is rewound to a point that precedes the
verifier’s preliminary commitment in session s (i.e., a (V0) message), all the
values corresponding to session s in the T table are not relevant any more. In
such cases, these values should be deleted from the table and the accumulation
of information for session s should restart from scratch.

The Input of the solve Procedure. The solve procedure is given three
arguments as input. The first argument, denoted 
, is a parameter determining
the total number of verifier messages that the solve procedure should handle.
At the top level of the recursion, the argument 
 equals m·(k+1), which is the
total number of (first stage) verifier messages in a schedule of m sessions (that
is, including the verifier’s preliminary step, (V0)). For simplicity of exposition,
we assume that m · (k +1) is a power of 2 (without any loss of generality). At
the bottom level of the recursion, the solve procedure should handle a single
(first stage) verifier message (that is, 
 equals 1).

The second argument given to the solve procedure, denoted hist, is a se-
quence of alternating prover and verifier messages which corresponds to the
“most recently visited” history of the interaction (as induced by the simula-
tor’s queries). In accordance with our conventions, all queries made by the
relevant invocation of the solve procedure will have hist as their prefix. At

the same amount of work again. In particular, all simulation work done for sessions
starting after the point to which to rewind may be lost (since the revealed values
of σ0

i,j and σ1
i,j become irrelevant once we rewind to a point preceding the verifier’s

preliminary commitment in Step (V0)). Conducting a “wasteful” rewinding strategy
may cause the work done by the simulator to accumulate to too much (thus causing
the simulator to run in super-polynomial time).

3This is in contrast to the rewinding strategy of the Richardson–Kilian simula-
tor [94] which heavily depends on the schedule as it is being revealed (remember
that the scheduling is dynamically determined by the adversary verifier and is not
necessarily known to the simulator in advance).
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the top level of the recursion, the hist argument is initialized as an empty
list and becomes increasingly longer as the simulation proceeds (its eventual
length being 2m · (k + 1)). In intermediate stages of the recursion the hist
argument may initially be of arbitrary length and is eventually augmented
with a suffix containing a total of 2
 (prover and verifier) messages.

The third argument of the solve procedure is the table T . As mentioned
above, this argument is used in order to store the first stage messages revealed
so far. In order to keep these messages relevant, the solve procedure will
inspect the hist argument to see for which sessions the (V0) message does not
appear in the history of the interaction. Since for such sessions, any value that
is possibly stored in the T table is not relevant for the rest of the simulation
(see above discussion about the “global” data structure), the solve procedure
will delete this value from the T table and will restart the accumulation of
information for these sessions from scratch.

The solve Procedure. We are now ready to proceed with the description
of the solve procedure. Given 
, hist and T as inputs, the solve procedure
acts as follows (see also Fig. 4.1):

If 
 = 1 (i.e., we are at the bottom level of the recursion):
1. If (V0) message of session s does not appear in hist, delete all session

s messages from T .
2. Uniformly choose a first stage prover message p, and feed V ∗ with

q = (hist, p).
3. Store V ∗’s answer v, in T .4

4. Output (p, v), T .
If 
 > 1 (i.e., we are at some intermediate level of the recursion):

1. Invoke the solve procedure recursively with parameters 
/2, hist and
T . The recursive invocation outputs a table T1, as well as a transcript
of 
 (first stage) messages denoted (p̃1, ṽ1, . . . , p̃�/2, ṽ�/2).

2. “Rewind” the interaction and perform Step 1 again. That is, invoke
the solve procedure recursively with parameters 
/2, hist and T1.
The recursive invocation outputs a table T2, as well as a transcript of

 (first stage) messages denoted (p1, v1, . . . , p�/2, v�/2).5

3. Augment the hist argument with the “most recently visited” transcript
(that is, the transcript (p1, v1, . . . , p�/2, v�/2) computed in Step 2)
and invoke recursively the solve procedure with parameters 
/2,

4The message v = V ∗(q) consists of a first stage verifier message in some session
s′ ∈ {1, . . . , m}. It is either of the form (V0) or (Vj) for some j ∈ {1, . . . , k}
(supposedly containing the “legal” openings of σ

r1,j

1,j , . . . , σ
rk,j

k,j ).
5We stress that corresponding messages in the (p̃1, ṽ1, . . . , p̃�/2, ṽ�/2) and the

(p1, v1, . . . , p�/2, v�/2) sequences do not necessarily belong to the same sessions
s ∈ {1, . . . , m}. This is because the concurrent schedule may be “dynamically”
determined by V ∗ as a function of the history of the interaction (in particular, dif-
ferent values of p̃1, . . . , p̃�/2 and p1, . . . , p�/2 may cause the corresponding answers
of V ∗ to belong to different sessions).
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(hist, p1, v1, . . . , p�/2, v�/2) and T2. The recursive invocation outputs
a table T3, as well as a transcript of the 
 subsequent (first stage)
messages denoted (p̃�/2+1, ṽ�/2+1, . . . , p̃�, ṽ�).

4. “Rewind” the interaction and perform Step 3 again. That is, invoke
the solve procedure recursively with parameters 
/2, (hist, p1, v1, . . . ,
p�/2, v�/2) and T2. The recursive invocation outputs a table T4, as
well as a transcript of the 
 subsequent (first stage) messages denoted
(p�/2+1, v�/2+1, . . . , p�, v�).6

5. Output T4 and the “most recently visited” transcript, which consists
of the messages (p1, v1, . . . , p�, v�).

Some Comments. Notice that the order and timing of the “rewinds” per-
formed by the solve procedure are determined obliviously of the concurrent
schedule (whereas the order in which the T table is updated does depend on
the scheduling of the various messages in the various sessions). Also note that,
as opposed to the [94, 82] simulation strategies, the values of the (first stage)
prover messages (i.e., of (Pj) messages) do not depend on the values revealed
by the verifier in the corresponding answers (i.e., in the (Vj) messages), but
are rather chosen uniformly and independently each time. Since the tran-
script output by the simulator consists of the prover/verifier messages that
were “most recently visited” by the solve procedure, the first stage messages
that eventually appear in the simulator’s output are identically distributed to
“real” first stage messages (i.e., messages that are actually exchanged between
an honest prover P and the verifier V ∗).

Updating the T Table. The T table is updated only when visiting the bot-
tom level of the recursion. Given a first stage verifier message v, the solve pro-
cedure determines the session number, s ∈ {1, . . . ,m}, of the corresponding
(Vj) message (according to the session identifiers that appear in v) and stores
(Vj) in T . The (Vj) message may either contain a sequence σ

r1,j

1,j , . . . , σ
r1,j

1,j of
n-bit strings or an ABORT message. Since the (Pj) message to which (Vj) is
given as answer may occur in the schedule much earlier than (Vj) does, the
simulator may perform rewinds that do not reach (Pj) (and so do not change
its value), but repeatedly obtain different (Vj)’s as answer. In such cases,
the solve procedure will always store the “recently obtained” (Vj) message
instead of previous ones (that were given as answer to the same (Pj)).

Note that since the schedule may vary “dynamically” as a function of the
history of the interaction, it may be the case that not all messages in a specific
session s ∈ {1, . . . ,m} are “visited” the same number of times by the solve
procedure. In particular, the number of verifier messages that appear in T
may differ from session to session and from iteration to iteration (within a
specific session). A detailed analysis of the contents of the T table whenever
the simulator reaches the second stage in session s appears in Section 5.4.

6Again, corresponding messages in the (p̃�/2+1, ṽ�/2+1, . . . , p̃�, ṽ�) and the
(p�/2+1, v�/2+1, . . . , p�, v�) sequences do not necessarily belong to the same session.
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Handling Second Stage Messages

Second-stage messages are handled by the prove procedure. The goal of this
procedure is to produce a second-stage transcript that is indistinguishable
from actual second stage transcripts (that is, between P and V ∗). This should
be done while avoiding a situation in which the basic Hamiltonicity proof
system that is conducted in the second-stage of the protocol is rejected by the
verifier V ∗ (since in such cases the simulator may get “stuck”). The key for
the success of the prove procedure lies in the success of the solve procedure
to discover the “challenge” sent by V ∗ already during the first stage of the
protocol. Given that the solve procedure has indeed succeeded in discovering
the “challenge”, the task of the prove procedure is trivial (whereas if the
solve procedure did not succeed to discover the “challenge” then the prove
procedure is bound to fail). One other case in which the task of the prove
procedure is trivial is when the “current history” of the interaction contains an
ABORT message on behalf of the verifier V ∗ (that is, in the relevant session).
In such cases the interaction in the relevant session stops and the prove
procedure does not need to do anything in order to produce a “legal” second
stage transcript.

The prove Procedure. The prove procedure is invoked either when the
concurrent schedule reaches the first prover message in the second stage of
session s∈{1, . . . ,m} (that is, a (p1) message) or when it reaches the second
prover message in the second stage (that is, a (p2) message). Note that this
may happen many times during the simulation process (as induced by the
adversary verifier’s scheduling strategy and the “rewinds” of the solve pro-
cedure). On input s∈{1, . . . ,m} and a partial execution transcript (denoted
hist), the prove procedure acts as follows:

1. Start by checking whether the hist argument contains an ABORT message
on behalf of the verifier (in session s). Specifically, for every j ∈ {1, . . . , k},
check whether the (Vj) message of session s (as it appears in hist) consists
of an ABORT message. If it does (for some j), abort session s (just as an
honest prover P would have done in such a case).

2. Otherwise (i.e., the hist argument does not contain an ABORT message in
session s), search the T table for a pair σ0

i,j , σ
1
i,j belonging to session s:

a) If the T table does not contain such a pair (that is, if for every i, j
the T table contains only σb

i,j for some fixed b ∈ {0, 1}, and possibly
some additional ABORT messages), output ⊥ (indicating failure of the
simulation).

b) If the T table indeed contains a pair σ0
i,j and σ1

i,j belonging to session
s, compute the value of V ∗’s “challenge”, σ = σ0

i,j⊕σ1
i,j and invoke the

convince subroutine with input (σ, hist). The convince subroutine
handles the execution of second-stage messages in the protocol (and
is described below).



5.1 Detailed Description of the Simulator 73

c) Let p denote the output of the convince subroutine (where p is either
of the form (p1) or (p2), depending on our location in the schedule).
Output p.

The convince Subroutine. Given the value of σ = σ1σ2 . . . σn, the pair
i, j, and hist, the convince subroutine handles the 
th (parallel) execution in
the second stage of session s in the following way:

Prover’s first step (p1): If σ� = 0, act according to Step (p̂1) in Construc-
tion 4.1.1. Specifically, select a random permutation, π, of the vertices V , and
commit (using a statistically-binding commitment scheme) to the entries of
the adjacency matrix of the resulting permuted graph. That is, output an n-
by-n matrix of commitments so that the (π(u), π(v))th entry is a commitment
to 1 if (u, v) ∈ E, and is a commitment to 0 otherwise.
Otherwise (i.e., if σ� = 1), commit to the entries of the adjacency matrix of
the full graph Kn. That is, output an n-by-n matrix of commitments so that
for every (u, v) ∈ {1, . . . , n}, the (u, v)th entry is a commitment to 1.

Prover’s second step (p2): Check (in hist) that V ∗ has properly decommitted
to all relevant values (just as the honest prover in Construction 4.3.1 would
have done). In addition, check that the 
th bit of σ0

i,j ⊕ σ1
i,j indeed equals σ�

for the given i, j. In case that the 
th bit of σ0
i,j ⊕ σ1

i,j is NOT equal to σ� for
some 
, but all the decommitments are proper, output ⊥.7

If σ� = 0, output π along with the revealing of all commitments.

Otherwise (i.e., if σ� = 1), output only the openings of commitments to en-

tries (π(u), π(v)) with (u, v) ∈ C where C is an arbitrary Hamiltonian cycle

in Kn. In both cases also supply the corresponding decommitments.

Some Comments. Note that the convince subroutine never causes the ver-
ifier V ∗ to reject in the second stage (that is, unless V ∗ manages to break the
computational binding property of the commitment used in (V0)). The rea-
son for this is that it is always invoked with the correct value of σ (which was
previously revealed by the solve procedure). In particular, once the prove
procedure has “safely” reached Step 2b the success of the prove procedure
is guaranteed (at least with overwhelming probability).

The actions taken by the convince subroutine are identical to the actions
taken by the simulator of Blum’s basic Hamiltonicity protocol (again, condi-
tioning on V ∗ not breaking the commitment in (V0)). As a consequence, the
distribution of the simulated second stages in our protocol are (almost) iden-
tical to the distribution produced by Blum’s simulator. This fact will be used
later in order to reduce the indistinguishability property of our simulator’s
output to the indistinguishability property of Blum’s simulator’s output.

7Notice that the latter will occur only in case that V ∗ has violated the com-
putational binding property of the commitment used in message (V0) (and hence
happens only with negligible probability).
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5.1.2 The Actual Simulator

The sim procedure which merges the solve and prove procedures together
handles all messages sent by V ∗ during the simulation process (that is, both
first-stage and second-stage messages). In general, the sim procedure is ob-
tained by incorporating the prove procedure into the solve procedure in a
way that enables the solve procedure to handle also second-stage messages
(see Fig. 5.1 for a “pseudocode” description of the sim procedure).

Procedure sim(
, hist, T ):

1. If 
 = 1,
a) If session s does not appear in hist, delete all session s messages in T .
b) As long as no first-stage verifier message has been reached, do:

i. If next scheduled message, pu, is a first-stage prover message:

Uniformly choose pu, and set vu ← V ∗(hist, p1, v1, . . . , pu−1, vu−1, pu).
ii. If next scheduled message, pu, is a second-stage prover message:

Set pu ← prove(i, (hist, p1, v1, . . . , pu−1, vu−1)),
and vu ← V ∗(hist, p1, v1, . . . , vu−1, pu).

c) As soon as a first-stage message vα has been reached store vα in T .
d) Output T and (p1, v1, . . . , pα, vα).
Remark: vα is the only first-stage verifier message in (p1, v1, . . . , pα, vα).

2. Otherwise (i.e., if 
 > 1),
a) Set T1, (p̃1, ṽ1, . . . , p̃α̃, ṽα̃) ← sim(
/2, hist, T ).
b) Set T2, (p1, v1, . . . , pα, vα) ← sim(
/2, hist, T1).
c) Set T3, (p̃α+1, ṽα+1, . . . , p̃α+β̃ , ṽα+β̃) ← sim(
/2, (hist, p1, v1, . . . , pα, vα), T2).
d) Set T4, (pα+1, vα+1, . . . , pα+β , vα+β) ← sim(
/2, (hist, p1, v1, . . . , pα, vα), T3).
e) Output T4 and (p1, v1, . . . , pα+β , vα+β).

Remark: (1) The value of α̃ (resp. β̃) is not necessarily equal to the value of α
(resp. β). (2) The sequence (p1, v1, . . . , pα+β , vα+β) contains exactly 2
 first-
stage prover and verifier messages (as well as arbitrarily many second-stage
messages). In particular, α + β ≥ 
.

Fig. 5.1. The sim procedure. Handles both first and second stage messages. It is
obtained by merging the solve and prove procedures (while using the table T ).

The two main modifications applied to the solve procedure (in order to
obtain the sim procedure) are the following: (1) If 
 = 1 (that is, at the bot-
tom level of the recursion), the sim procedure will keep exchanging messages
until it reaches a first-stage verifier message. This is done while augmenting
the hist argument with the corresponding outcomes of the prove procedure
(according to the schedule that is being revealed by V ∗). Once a first-stage
message is reached, the sim procedure acts exactly as the solve procedure.
(2) Similarly to the solve procedure, the output of the sim procedure is a
partial execution transcript. However, unlike the solve procedure, the out-
put length of the sim procedure is greater than 2
 (since, besides 2
 first-stage
messages, it will also contain second-stage messages).
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5.2 The Simulator’s Running Time

We start by showing that the simulator’s running time is polynomial both in
m and in n = |V |. Since m = poly(n) it will follow that the simulator runs in
polynomial-time in n.

Using the fact that the total number of sessions run by the adversary
verifier V ∗ is at most m, we infer that the number of invocations of the
prove procedure at the bottom level of the recursion (i.e., when 
 = 1) is
upper bounded by m. In particular, the work invested by the sim procedure at
the bottom level of the recursion is upper bounded by poly(n) · m = poly(n)
(where the poly(n) factor in the poly(n) ·m term results from the polynomial
amount of work invested in each invocation of the prove procedure). Since
each invocation of the sim procedure with parameter 
 > 1 involves four
recursive invocations of the sim procedure with parameter 
/2, we have that
the work W (
) that is invested by the sim procedure in order to handle 
 (first
stage) verifier messages satisfies:

W (
) ≤
{

poly(n) If 
 = 1
4 · W (
/2) If 
 > 1.

(5.1)

Since the total number of first stage verifier messages in the m sessions of
the concurrent schedule equals m · (k + 1), the total running time of the
simulation process (which consists of a single invocation of the sim procedure
with parameter m·(k+1)) equals W (m·(k+1)). A straightforward solution of
the recursive formula in (5.1) establishes that W (m ·(k+1)) is upper bounded
by:

4log2(m·(k+1)) · poly(n) = (m · (k + 1))2 · poly(n) = poly(n).

Hence, we have:

Proposition 5.2.1 For every m=poly(n), the simulator Sm runs in (strict)
polynomial-time in n.

5.3 The Simulator’s Output Distribution

We now turn to show that for every G ∈ HC, the simulator’s output distribu-
tion is computationally indistinguishable from V ∗’s view of interactions with
the honest prover P . Specifically,

Proposition 5.3.1 The ensemble {SV ∗
m (G)}G∈HC is computationally indis-

tinguishable from the ensemble {viewP

V ∗(G)}G∈HC .

Proof As a hybrid experiment, consider what happens to the output distri-
bution of the simulator Sm if we (slightly) modify its simulation strategy in
the following way. Suppose that on input G = (V,E) ∈ HC, the simulator
Sm obtains a directed Hamiltonian cycle C ⊂ E in G (as auxiliary input) and
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uses it in order to produce real prover messages whenever it reaches the sec-
ond stage of the protocol. Specifically, whenever it reaches the second stage of
session s ∈ {1, . . . ,m}, the hybrid simulator inspects the T table and checks
whether the prove procedure should output ⊥.

If the prove procedure has to output ⊥, the hybrid simulator outputs
⊥ and halts (this could happen both in Step 2.a of the prove procedure or
in Step (p2) of the convince subroutine). Otherwise, the hybrid simulator
follows the prescribed prover strategy and generates prover messages for the
corresponding second stage (by using the cycle it possesses rather than in-
voking the prove procedure). We claim that the ensemble consisting of the
resulting output (which we denote by ŜV ∗

m (G, C)) is computationally indistin-
guishable from {SV ∗

m (G)}G∈HC . Namely,

Claim 5.3.2 The ensemble {SV ∗
m (G)}G∈HC is computationally indistinguish-

able from the ensemble {ŜV ∗
m (G, C)}G∈HC .

Proof Sketch The claim is proved using a standard hybrid argument. It
reduces the indistinguishability of two neighboring hybrids to the indistin-
guishability of Blum’s simulator’s output (that is, if the output of Blum’s
simulator [18] is computationally indistinguishable from the view of real ex-
ecutions of the basic Hamiltonicity proof system, then so are neighboring
hybrids). The latter is proved to hold based on the computational-secrecy
property of the commitment scheme that is used by the prover in Step (p̂1)
of Construction 4.1.1 (see [18, 57] for further details).

We consider m + 1 hybrid distributions that are induced by the output
of the following hybrid simulation procedure. For s ∈ {0, . . . ,m}, given G ∈
HC, a Hamiltonian cycle C in G and black-box access to V ∗, the sth hybrid
simulation procedure (which we denote by Hs), handles first-stage messages
exactly as the “original” simulator Sm would have handled. For every session
index s′ ≤ s, the hybrid simulator Hs handles also second-stage messages
exactly as Sm does (that is, by invoking the prove procedure), whereas for
every session index s′ > s, the hybrid simulator Hs handles the relevant
second-stage messages exactly as the “modified” simulator Ŝm does (that is,
by using the cycle it possesses in order to produce real prover messages).
Note that the output of HV ∗

m is identically distributed to the output of SV ∗
m ,

whereas the output of HV ∗
0 is identically distributed to the output of ŜV ∗

m . Also
note that for every s ∈ {0, . . . ,m}, the distribution HV ∗

s (G, C) is efficiently
constructible (specifically, given a Hamiltonian cycle C in G, it is easy to follow
SV ∗

m (G)’s strategy, while producing real prover messages whenever necessary).
Thus, indistinguishability of the ensemble {SV ∗

m (G)}G∈HC from the ensemble
{ŜV ∗

m (G)}G∈HC follows from indistinguishability of {Hs−1(G, C)}G∈HC and
{Hs(G, C)}G∈HC .

Claim 5.3.3 For all s ∈ {1, . . . ,m}, the ensembles {Hs−1(G, C)}G∈HC and
{Hs(G, C)}G∈HC are computationally indistinguishable.
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Proof Sketch Follows from indistinguishability of Blum’s simulator’s output
(by applying an additional hybrid argument). We use the extra property that
the output is indistinguishable even if the distinguisher has a priori knowledge
of a Hamiltonian cycle C in G (this follows from the auxiliary input ZK
property of Blum’s protocol).

This completes the proof of Claim 5.3.2.

We next consider what happens to the output distribution of the hybrid sim-
ulator Ŝm if we assume that it does not output ⊥ (i.e., does not get “stuck”).
It turns out that in such a case, the resulting output distribution is identical
to the distribution of {viewP

V ∗(G)}G∈HC . Namely,

Claim 5.3.4 The ensemble {ŜV ∗
m (G, C)}G∈HC conditioned on it not being ⊥,

is identically distributed to the ensemble {viewP

V ∗(G)}G∈HC .

Proof Notice that the first-stage messages that appear in the output of the
“original” simulator (that is, Sm) are identically distributed to the first-stage
messages that are produced by an honest prover P (since they are uniformly
and independently chosen). Since the first-stage messages that appear in the
output of the “modified” simulator (that is, Ŝm) are identical to the ones ap-
pearing in the output of Sm, we infer that they are identically distributed to
the first-stage messages that are produced by an honest prover P . Using the
fact that the second-stage messages that appear in the output of the “modi-
fied” simulator are (by definition) identically distributed to the second-stage
messages that are produced by an honest prover P , we infer that the ensem-
bles {ŜV ∗

m (G, C)}G∈HC and {viewP

V ∗(G)}G∈HC are identically distributed. We
stress that the first-stage prover messages that appear in the output of Ŝm

are distributed uniformly and randomly regardless of whether Ŝm outputs
⊥. (In particular, every outcome of these messages could potentially occur,
independently of whether the output of Ŝm equals ⊥.)

As we show in Proposition 5.4.1 (see next section), Ŝm outputs ⊥ only with
negligible probability. In particular, the ensemble {ŜV ∗

m (G, C)}G∈HC is com-
putationally indistinguishable from (and in fact statistically close to) the en-
semble {ŜV ∗

m (G, C)}G∈HC , conditioned on it not being ⊥. Namely,

Claim 5.3.5 The ensemble {ŜV ∗
m (G, C)}G∈HC is computationally indistin-

guishable from the ensemble {ŜV ∗
m (G, C)}G∈HC conditioned on it not being ⊥.

It can be seen that Claims 5.3.2, 5.3.4 and 5.3.5 imply the correctness of
Proposition 5.3.1.

5.4 The Probability of Getting “Stuck”

We next analyze the probability that the sim procedure gets “stuck” during its
execution. We are particularly interested in the probability that any specific
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invocation of the prove procedure returns ⊥ during the simulation process
(note that this is the only reason for which the simulator may get “stuck”).
As will turn out from our analysis, any specific invocation of the prove pro-
cedure will return ⊥ with probability at most 1/2Ω(k). Since the number of
invocations of the prove procedure is polynomial in n, it follows that the
sim procedure outputs ⊥ with probability poly(n) · 1/2Ω(k). By setting the
number of rounds in the protocol to be k(n) = α(n) · log n, where α(·) is any
super-constant function (e.g., α(n) = log log n), we are guaranteed that the
sim procedure outputs ⊥ with negligible probability. Specifically:

Proposition 5.4.1 Let α : N → N be any super-constant function, let
k(n) = α(n) · log n, and consider any instantiation of Construction 4.3.1 with
parameter k = k(n). Then the probability of getting “stuck” during the simu-
lation is negligible. Specifically, for every sufficiently large G = (V,E) ∈ HC:

Pr
[
ŜV ∗

m (G) = ⊥
]

<
1

nα(n)/8

where n = |V | and the probability is taken over the simulator’s coin tosses.

Proof We consider executions of the hybrid simulator Ŝm, given input G =
(V,E), random coins ρ, and black-box access to V ∗ (we let ŜV ∗

m,ρ(G) denote
the resulting output).

Let qS(n) be a (polynomial) bound on the total number of invocations of
the prove procedure during an execution of the simulator (note that qS(n)
is upper bounded by the simulator’s running time). As we have mentioned
before, the (hybrid) simulator Ŝm gets “stuck” (i.e., outputs ⊥) if and only
if there exists a session s ∈ {1, . . . ,m} and an index 
 ∈ {1, . . . , qS(n)} so
that the 
th invocation of the prove procedure (for session s) outputs ⊥. Let
hists,� = hists,�(ρ) be a random variable describing the contents of the hist
argument at the moment that the prove procedure is invoked for the 
th

time (with s as its first argument). Using the union-bound we have:

Prρ

[
ŜV ∗

m,ρ(G) = ⊥
]

≤
m∑

i=1

qS(n)∑
�=1

Prρ [prove(s, hists,�(ρ)) = ⊥] . (5.2)

Equation (5.2) will be bounded using the following lemma. This lemma,
which in some sense is the crux of the proof (of the zero-knowledge property),
establishes an upper bound on the probability that a specific invocation of
the prove procedure outputs ⊥.8

8Note that if some invocation of the prove procedure has been reached during
the execution of Ŝ, then it must be the case that all previous invocations of the
prove procedure did not output ⊥ (since otherwise the the execution of Ŝ would
have halted at an earlier stage).
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Lemma 5.4.2 For every (s, 
) ∈ {1, . . . ,m} × {1, . . . , qS(n)} and all suffi-
ciently large G ∈ HC:

Prρ [prove(s, hists,�(ρ)) = ⊥] <
1

nα(n)/4

where n = |V |.

Combining Lemma 5.4.2, (5.2) and the hypothesis of Proposition 5.4.1 we
infer that for all sufficiently large n = |V |:

Prρ

[
ŜV ∗

m,ρ(G) = ⊥
]
≤ m · qS(n) · 1

nα(n)/4

=
m · qS(n)
nα(n)/8

· 1
nα(n)/8

<
1

nα(n)/8
(5.3)

Where (5.3) holds whenever m · qS(n) < nα(n)/8 (which is satisfied for suffi-
ciently large n = |V |).

Proof of Lemma 5.4.2 Let s ∈ {1, . . . ,m} and 
 ∈ {1, . . . , qS(n)}. We next
show that the probability that the 
th invocation of the prove procedure
outputs ⊥ is upper bounded by 1/nα(n)/4.

Throughout the analysis we will assume that the simulator never uses
the same prover message twice during its execution. Such an assumption is
justified by the following claim.

Claim 5.4.3 There exists a constant c > 0, so that the probability that the
same prover message occurs twice during the simulation is at most nc/2k.

Proof The proof relies on the fact that prover messages in the protocol
are k-bits long. In particular, the probability that any two uniformly chosen
(Pj) messages are equal is at most 1/2k. Since for every session, the number
of prover messages sent is at most poly(n), then the overall probability of
sending the same prover message twice is at most poly(n)/2k.

We will also assume that the prove procedure never outputs ⊥ in
Step (p2) of the convince subroutine. This assumption is justified by the
following claim.

Claim 5.4.4 The probability that the prove procedure outputs ⊥ in Step (p2)
of the convince subroutine is at most 1/2k.

Proof Sketch The proof relies on the computational binding property of
the commitment used by the verifier in message (V0). The key point is that
the prove procedure outputs ⊥ in Step (p2) of the convince subroutine
only if the 
th bit of σ0

i,j ⊕ σ1
i,j is NOT equal to σ� for some 
, but all the

decommitments sent by V ∗ in the corresponding message (v1) are proper.
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Notice that this event could have occurred only in case that V ∗ has sent
valid decommitments to two different values for the 
th bit of σ

1−ri,j

i,j (where
rj = r1,j , . . . , rk,j is the k-bit string sent in the (Pj) message appearing in
hists,�(ρ)). One of these decommitments was sent during the execution of
the solve procedure (while obtaining the corresponding σ0

i,j , σ
1
i,j values in

Stage 1), whereas the second one was sent in message (v1). So if the prove
procedure outputs ⊥ in Step (p2) of the convince subroutine then it must be
the case that the computational binding property of the commitment used in
message (V0) has been broken. This can only happen with probability smaller
than 1/2k (or otherwise the execution of Ŝ along with V ∗ could have been
used to break the computational binding property of the commitment with
the same probability of success).
We thus set our goal to bound the probability that the prove procedure
outputs ⊥ assuming that:

1. The simulator never sends the same prover message twice.
2. The prove procedure never outputs ⊥ in Step (p2) of the convince

subroutine.

By the above discussion, it will be sufficient to bound this probability by
1/2k/2. Taking n to be sufficiently large, the probability that the prove pro-
cedure outputs ⊥ would be then upper bounded by

nc/2k + 1/2k + 1/2k/2 < (nc + 2)/2k/2

= (nc + 2)/nα(n)/2

< 1/nα(n)/4. (5.4)

From now on, we focus on messages that belong to session s and ignore mes-
sages from other sessions (unless otherwise specified). For every choice ρ of
the simulator’s randomness we focus on an invocation of the prove proce-
dure with input (s, hists,�) = (s, hists,�(ρ)). We associate the invocation of
the prove procedure with the value of the (V0) message that appears in the
hists,�(ρ) argument. We will analyze the execution of the simulator from the
time (V0) has been last visited until the time that prove(s, hists,�) is invoked.

The Contents of the T Table. For every j ∈ {1, . . . , k}, we consider the
sequence of (first stage) verifier messages, (Vj), that appear in the T table
at the moment that prove(s, hists,�) is invoked. Let αj denote the length
of this sequence. The value αj actually corresponds to the number of times
that the (Vj) message has been visited since all session s messages have been
last deleted from T . (Recall that this happens whenever a (V0) message is
visited by the sim procedure.) Note that αj is not necessarily equal for all
j ∈ {1, . . . , k}.

For u ∈ {1, . . . , αj}, let (Pj)u, (Vj)u denote the uth pair of (Pj), (Vj)
messages that was visited by the sim procedure since (V0) has been last
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visited.9 (Using this notation, the jth above sequence can be written as
(Vj)1, (Vj)2, . . . , (Vj)αj

.) We now have the following claim.

Claim 5.4.5 Suppose that prove(s, hists,�) = ⊥. Then for all j ∈ {1, . . . , k}:

1. (Vj)u = ABORT for all u < αj.
2. (Vj)αj

�= ABORT.

Proof Going back to the description of the prove procedure, and based on
our assumption that the prove never outputs ⊥ in step (p2) of the convince
subroutine (following Claim 5.4.4), we observe that the only reason for which
it outputs ⊥ is that it has reached Step (2a). Put in other words, the prove
procedure will output ⊥ if and only if:

1. The hists,� argument does not contain an ABORT message in session s.
2. The T table does not contain a pair σ0

i,j , σ
1
i,j belonging to session s.

We start by showing that for all j ∈ {1, . . . , k}, it holds that (Vj)αj
�= ABORT.

Consider the sequence of first stage verifier messages that appear in hists,� and
belong to session s. Notice that this sequence contains all k+1 first stage mes-
sages in session s (since prove(s, hists,�) is always invoked only after the first
stage of session s has been completed). Using the fact that the hists,� argument
consists of the “most recently visited” execution transcript in the simulation,
we have that the sequence of first-stage verifier messages that appear in hists,�

and belong to session s can be written as (V0), (V1)α1
, (V2)α2

, . . . , (Vk)αk
.

Since, by Condition (1) above, the hists,� argument does not contain an ABORT
message in session s it immediately follows that for all j ∈ {1, . . . , k}, it holds
that (Vj)αj

�= ABORT.
Suppose now for contradiction that there exists a j ∈ {1, . . . , k} and a

u ∈ {1, . . . , αj − 1} so that (Vj)u �= ABORT. Since we are assuming that all
(Pj)’s in the simulation are different, then so are (Pj)u and (Pj)αj

. Since
both (Vj)u and (Vj)αj

are not equal to ABORT it immediately follows that the
table contains a pair σ0

i,j , σ
1
i,j belonging to session s.10 This is in contradiction

to Condition (2) above and thus to our hypothesis that the prove procedure
outputs ⊥.

9Note that the (Pj) message may occur in the schedule much earlier than (Vj)
does. In particular, the simulator may perform rewinds that do not reach (Pj) (and
so do not change its value), but repeatedly obtain different (Vj)’s as answer. In such
cases, the (Vj)u message stored in T as answer to (Pj)u will always correspond to
the “most recently obtained” (Vj) message that was given as answer to (Pj)u (see
discussion on Page 71).

10To see this notice that, if (Pj)u = r1,j , . . . , rk,j and (Pj)αj
= s1,j , . . . , sk,j are

different, then there must exist i ∈ {1, . . . , k} so that ri,j �= si,j . Since both (Vj)u

and (Vj)αj
are not equal to ABORT, then the values of both σ

ri,j

i,j and σ
si,j

i,j must have

been revealed by V ∗.
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Definition 5.4.6 (Bad random tapes) Let R be the set of all random tapes
used by the simulator and let ρ ∈ R. For any j ∈ {1, . . . , k} define a Boolean
indicator badj(ρ) = bads,�,j(ρ) to be true if and only if when S uses ρ as
random tape it holds that:

1. (Vj)u = ABORT for all u < αj.
2. (Vj)αj

�= ABORT.

By Claim 5.4.5, we have:

Prρ

[
prove(s, hists,�(ρ)) = ⊥

]
≤ Prρ

⎡⎣ k∧
j=1

badj(ρ)

⎤⎦ . (5.5)

We shall show that for all sufficiently large n, the fraction of “bad” tapes ρ ∈ R
for which

∧k
j=1 badj(ρ) holds is at most 1/2k−3d where d (= log2(m·(k+1))) is

the depth of the simulator’s recursion. To do this we will show that every “bad”
random tape can be mapped into a set of 2k−3d − 1 random tapes for which
badj(ρ) does not hold for some j. Moreover, this will be done so that every
two “bad” random tapes are mapped to two disjoint sets of “good” random
tapes. Put in other words, for every random tape that causes

∧k
j=1 badj(ρ) to

hold, there exist 2k−3d−1 other tapes that do not. Since the simulator picks a
random tape uniformly amongst all possible random tapes, it will then follow
that the probability that

∧k
j=1 badj(ρ) holds is at most 1/2k−3d.

Lemma 5.4.7 (Counting bad random tapes) Let B ⊆ R be the set of all ρ ∈
R for which

∧k
j=1 badj(ρ) holds. Then, there exists a mapping f : R −→ 2R

such that for every ρ ∈ B:

1. |f(ρ)| ≥ 2k−3d.
2. For all ρ′ ∈ B \ {ρ}, the sets f(ρ) and f(ρ′) are disjoint.
3. The sets f(ρ) \ {ρ} and B are disjoint.

The proof of Lemma 5.4.7 is the most involved part in the simulator’s analysis.
Before we prove it (in Sect. 5.4.1), we show how it can be used in order to
complete the proof of Lemma 5.4.2. We start with the following corollary of
Lemma 5.4.7.

Corollary 5.4.8 Let B ⊆ R be as above. Then |B|/|R| ≤ 1
2k−3d .

Proof Consider the set:

G def=
⋃
ρ∈B

(
f(ρ) \ {ρ}

)
.

By Condition (3) in Lemma 5.4.7 it holds that G ⊆ R \ B. We thus have:
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|R| − |B| = |R \ B|
≥ |G|

=
∑
ρ∈B

|f(ρ) \ {ρ}| (5.6)

≥ |B| ·
(
2k−3d − 1

)
(5.7)

where (5.6) follows from Condition (2) in Lemma 5.4.7 and (5.7) follows from
Condition (1) in Lemma 5.4.7.
Using Corollary 5.4.8 we are now able to complete the proof of Lemma 5.4.2:

Prρ

⎡⎣ k∧
j=1

badj(ρ)

⎤⎦ = Prρ [ρ ∈ B]

=
|B|
|R|

≤ 1
2k−3d

. (5.8)

Since k = ω(log n) and d = log m · (k + 1) = O(log n) then for all sufficiently
large n’s it holds that 1/2k−3d < 1/2k/2. By combining (5.8) with (5.5) we
infer that for all sufficiently large n’s:

Prρ

[
prove(s, hists,�(ρ)) = ⊥

]
<

1
2k/2

.

This completes the proof of Lemma 5.4.2.

5.4.1 Counting Bad Random Tapes

We now turn to prove Lemma 5.4.7. We will start by defining the notion
of rewind intervals. Loosely speaking, these are segments of the concurrent
schedule that are induced by the various rewindings of the simulator and
are executed multiple times during the simulation. We will then focus on
a subset of “special” intervals. These intervals satisfy some useful properties
that enable us to use them in order to define the desired mapping f : R → 2R.
Using the properties of the “special” intervals we will then be able to argue
that the mapping f indeed satisfies the required properties.

Throughout the proof of Lemma 5.4.7, we consider the actions taken during
the execution of the solve procedure (rather than considering the full execu-
tion of the sim procedure). This renders our analysis much “cleaner” since we
only have to refer only to first-stage messages (namely, (P0), (V0), (P1), (V1),
..., (Pk), (Vk)), and can ignore second-stage messages (namely (p1), (v1), (p2)).
Extension of the analysis to the sim procedure case can be then achieved in
a straightforward way (the reason this is possible is that the timing of the
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simulator’s “rewinds” depends only on the number of first-stage messages
exchanged so far).

Partitioning the Schedule into Rewind Intervals. The execution of the
solve procedure induces a partitioning of the 2·m ·(k+1) (prover and verifier)
messages in the schedule into disjoint rewind intervals. At the top level of the
recursion there are two disjoint intervals of length m ·(k+1) and at the bottom
of the recursion there are m · (k+1) disjoint intervals of length 2. In general,
at the wth level of the recursion (out of d = log2(m · (k+1)) possible levels)
there are 2w disjoint intervals of m(k + 1)/2w+1 messages each.

Notice that rewind intervals may contain messages from all sessions. Also
notice, that a rewind interval may be “visited” multiple times during the
execution of the solve procedure (in particular, a level-w interval is visited
exactly 2w times during the simulation). Since the scheduling of messages may
vary “dynamically” with the history of the interaction, a specific interval may
contain a different scheduling of messages each time it is visited.

Minimal Rewind Intervals. We denote by [a, b] an interval starting with
prover message a and ending with verifier message b. Consider the scheduling
of messages as they appear in the hists,� argument (i.e., at the moment that
prove(s, hists,�) is invoked). Focusing on messages of session s, we note that
for every pair of messages (Pj), (Vj) in this session we can associate a level-w
interval [aj , bj ] so that:

1. Both (Pj) and (Vj) are contained in [aj , bj ].
2. None of the level-(w+1) subintervals of [aj , bj ] contains both (Pj) and (Vj).

We call such a rewind interval a j-minimal interval. Notice that for every
j ∈ {1, . . . , k} there is only one j-minimal interval [aj , bj ] and that for every
j �= j′ the interval [aj , bj ] is different from [aj′ , bj′ ].

 aj−1  [
(P(j−1)) � [
(V(j−1))  [

�bj−1
� [

(Pj) aj+1 aj [
(Vj)
(P(j+1)) �bj

[
 [

(V(j+1)) � �bj+1
� [

Fig. 5.2. Demonstrates how minimal intervals are determined. Also demonstrates
possible containments between minimal intervals of different iterations. In this ex-
ample, the intervals [aj−1, bj−1] and [aj+1, bj+1] are disjoint (as well as the intervals
[aj−1, bj−1] and [aj , bj ]), whereas the interval [aj+1, bj+1] contains [aj , bj ].
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In some sense j-minimal intervals correspond to the shortest interval in
which the simulator can rewind message (Vj) (that is, while potentially chang-
ing the value of (Pj)). Intuitively, for such a rewinding to be useful, the interval
should not contain message (V0). Otherwise, the values that were revealed in
some run of the interval become irrelevant once rewinds are performed (since
all the relevant values in the T table are deleted whenever we rewind past
(V0)). Likewise, the interval should not contain message (p1). Otherwise, the
simulation faces the risk of getting “stuck” before it manages to reveal multi-
ple (Pj), (Vj) pairs of messages (by running the interval multiple times).

It can be seen that the number of minimal intervals that do not contain
neither (V0) or (p1) is at least k′ = k − 2d (for simplicity, these intervals will
be indexed by {1, . . . , k′}). The reason for this is that in every level of the
recursion the (V0) (resp. (p1)) message is contained in exactly one interval. In
particular, the number of minimal intervals that are “spoiled” by (V0) (resp.
(p1)) is at most d. This guarantees that (V0) and (p1) are not visited during
single invocations of [aj , bj ]. For the sake of our analysis, however, we will
want to make sure that (V0) and (p1) are not visited also during multiple
invocations of [aj , bj ]. In such a case, requiring that [aj , bj ] contains neither
(V0) nor (p1) may not be sufficient.11 Jumping ahead, we remark that what
we will have to require is that for some intervals, even intervals containing
them contain neither (V0) nor (p1).

Special Rewind Intervals. In order to define the mapping f : R → 2R,
we will need to focus on a specific set of disjoint minimal intervals (called
special intervals). An important fact that we will extensively use is that if
two intervals are disjoint then so is the portion of the random tape that
used to run them (i.e., in order to produce uniformly chosen (Pj) messages
for the corresponding interval). Another important fact is that in each run
of the interval, the solve procedure makes use of “fresh” randomness (i.e.,
randomness used in one run is never used in a later run).

Definition 5.4.9 (Special intervals) A minimal interval [aj , bj ] is said to be
special if it does not contain any other minimal interval (i.e., if [aj , bj ] does
not contain [aj′ , bj′ ] for any j′ �= j).

Notice that all special intervals are disjoint. We let S ⊆ {1, . . . , k′} denote
the set of all indices j for which [aj , bj ] is special. For simplicity, assume that
S = {1, . . . , |S|}.

For j ∈ S, let δj be the number of times [aj , bj ] is run since [aj−1, bj−1]
is “last” visited (where by “last” we mean during the time (V0) is visited
until (p1) is reached). A trivial upper bound on δj is 2w, where w is the
recursive depth of interval [aj , bj ]. However, since we restrict ourselves to the
time between (V0) is visited until (p1) is reached, the value of δj is typically

11For example, if the interval containing [aj , bj ] contains either (V0) or (p1), then,
in some cases, the number of “safe” invocations of [aj , bj ] is not more than two (even
though [aj , bj ] itself does not contain (V0) or (p1)).
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smaller than 2w and is in fact upper bounded by αj (recall that αj denotes
the number of times (Vj) has been visited since the T table was initialized).
Notice that δj may be actually smaller than αj since we are counting only the
runs of [aj , bj ] that have occurred after [aj−1, bj−1] was “last” visited.

The Mapping f . We are finally ready to define the mapping f : R → 2R

(Fig. 5.4). This mapping makes use of another mapping hS : R× [δ1] × . . . ×
[δ|S|] → R (Fig. 5.3) that depends on the set S (as determined by the schedule
at the moment that prove(s, hists,�) is invoked).

At a high level, given input ρ and u1, . . . , u|S|, the mapping hS takes the
portion of the random tape ρ that corresponds to the uth

j run of interval
[aj , bj ] and swaps it with the portion that corresponds to the “last” (i.e.,
δth
j ) run of this interval (in case uj = δj then hS leaves the runs of [aj , bj ]

intact). This is done for all j ∈ S. As we have observed above, different runs
of a specific interval use disjoint portions of the random tape. In particular,
swapping the randomness of two runs of [aj , bj ] is an operation that makes
sense. Moreover, since disjoint intervals use disjoint portions of the random
tape, for every j �= j′ swapping two runs of [aj , bj ] will not interfere with
swapping two runs of [aj′ , bj′ ].

Mapping hS : R× [δ1] × . . . × [δ|S|] −→ R

Input: A random tape ρ ∈ R and a sequence u = u1, . . . , u|S| ∈ [δ1]× . . .× [δ|S|]
Output: A random tape ρu1,...,u|S| ∈ R

1. Set ρu0 ← ρ.
2. For j = 1, . . . , |S|:

a) Let ρw denote the portion of ρu1,...,uj−1 that is used in wth run of [aj , bj ].
b) Swap the locations of ρuj and ρδj within ρu1,...,uj−1 .
c) Denote by ρu1,...,uj the resulting string.

3. Output ρu1,...,u|S| .

Fig. 5.3. Mapping a “bad” random tape to a “good” random tape.

The mapping f is obtained by invoking hS(ρ, u1, . . . , u|S|) with all possible
values of u1, . . . , u|S| ∈ [δ1] × . . . × [δ|S|] as input. The set S and the values
δ1, . . . , δ|S| used in order to define the mapping hS are determined by the map-
ping f . This is done by running and monitoring the simulation with random
tape ρ and black-box access to V ∗. Once prove(s, hists,�) is reached, f can
inspect the scheduling of messages as it appears in hists,� and determine S.12

12Here we implicitly assume that all invocations of the prove procedure prior to
the 
th invocation did not return ⊥. This assumption is valid, since otherwise the
simulator Ŝm would have never reached the 
th invocation of the prove procedure
(as it would have halted before reaching the 
th invocation, cf. Footnote 8).
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Notice that the mapping f can be computed efficiently. However, this fact
is immaterial for the correctness of the analysis since all we have to do is to
establish the existence of such a mapping (regardless of its efficiency).

Mapping f : R −→ 2R

Input: A random tape ρ ∈ R
Output: A set of random tapes G ⊆ 2R

1. Determine the set of special indices S ⊆ {1, . . . , k′}:
a) Run the simulator given random tape ρ and access to V ∗.
b) Check for which j, interval [aj , bj ] is special (as induced by V ∗’s schedul-

ing).
2. For j ∈ S, let δj be the number of times [aj , bj ] is run since [aj−1, bj−1] is

“last” visited.
3. Let u = u1, . . . , u|S| denote a sequence in ∆

def
= [δ1] × . . . × [δ|S|]. Set

G =
⋃

u∈∆

{
hS(ρ, u)

}
.

4. Output G.

Fig. 5.4. Mapping a single “bad” random tape to a set of “good” random tapes.

The following claim will establish item (3) of Lemma 5.4.7.

Claim 5.4.10 Let ρ ∈ B be a bad random tape. Then the sets f(ρ) \ {ρ} and
B are disjoint.

Proof It will be sufficient to show that for every u1, . . . , u|S| �= δ1, . . . , δ|S|,
the random tape ρu1,...,u|S| = hS(ρ, u1, . . . , u|S|) does not belong to B (notice
that hS(ρ, δ1, . . . , δ|S|) = ρ).

Consider the smallest j ∈ S for which uj �= δj . We start by observing that,
up to the point in which [aj , bj ] is run for the first time (after the “last” run
of interval [aj−1, bj−1]), the randomness used by the simulator when running
with ρu1,...,u|S| is equal to the randomness used by the simulator when running
with ρ. This means that all runs of [aj , bj ] that occur after [aj−1, bj−1] has
been “last” visited will have the same “history” of interaction regardless of
whether ρu1,...,u|S| or ρ is used.

The key observation for proving the claim is that, modulo the history of
the interaction at the starting point of an interval, the randomness used in a
specific run of an interval completely determines its outcome (remember that
V ∗’s random tape is fixed in advance). Since the last occurrence of (Vj) in
T corresponds to the “last” time [aj , bj ] is visited, then the portion of the
random tape used for the δth

j run of [aj , bj ] completely determines the value
of (Vj)αj

(which is the last occurrence of (Vj) in T ).
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Notice that, when using ρu1,...,u|S| as random tape, the randomness used
in ρ in order to perform the δth

j run of [aj , bj ] is instead used for the uth
j run

of interval [aj , bj ]. Since the randomness used in a specific run of an interval
completely determines its outcome, the value of (Vj) in the uth

j run of [aj , bj ]
is now equal to (Vj)αj

. Recall that ρ ∈ B. This in particular means that, when
using ρ as random tape, it holds that (Vj)αj

�= ABORT (by Condition (2) in
Definition 5.4.6). Denoting the (Vj) message that appears in the uth

j run of
interval [aj , bj ] by (Vj)u we then have that, when the simulator uses ρu1,...,u|S|
as random tape, (Vj)u = (Vj)αj

�= ABORT.
Since uj < δj , then (Vj)u does not appear in hists,� (since it appears in

the outcome of the uth
j run of [aj , bj ] and the “most recently visited” run

when prove(s, hists,�) is invoked is the δth
j run). In addition since whenever

prove(s, hists,�) is invoked, some (Vj) message must appear in hists,�, we
infer that there exists a (Vj) that occurs after (Vj)u does. This message
corresponds to (Vj)α′

j
where α′

j is the number of occurrences of (Vj) in T
when using ρu1,...,u|S| as random tape.

We thus have that, when using ρu1,...,u|S| as random tape, there must exist
a u < α′

j for which (Vj)u �= ABORT. By Condition (1) in Definition 5.4.6 this
implies that ρu1,...,u|S| �∈ B.

We now turn to establish Item (2) of Lemma 5.4.7. Let g : B×{0, 1}k × [δ1]×
. . . × [δ|S|] → R be a mapping defined as:

g(ρ, S, u) def= hS(ρ, u)

where ρ ∈ B. To show that for all ρ �= ρ′ ∈ B, the sets f(ρ) and f(ρ′) are
disjoint it will be sufficient to show that g is one-to-one. In such a case we
would have that for any two S �= S′ ⊆ {1, . . . , k′}, it holds that hS(ρ, u) �=
hS′(ρ′, u′) (regardless of the values of ρ, u and ρ′, u′) and so the sets f(ρ) =⋃

u

{
hS(ρ, u)

}
and f(ρ′) =

⋃
u

{
hS′(ρ′, u)

}
are disjoint.

Claim 5.4.11 Let g : B × {0, 1}k × [δ1]× . . .× [δ|S|] → R be as above. Then,
g is one-to-one.

Proof To argue that g is one-to-one we will define an inverse mapping g−1

so that for every random tape ρ′ ∈ range(g), the value of g−1(ρ′) = (ρ, S, u)
satisfies g(ρ, S, u) = ρ′.

Given ρ′ ∈ range(g), the basic idea for defining g−1 is to recognize the
subset of intervals whose randomness was swapped by f (while “producing”
ρ′ from some ρ ∈ B) and to reverse the swapping (i.e. to swap back the
randomness of these intervals). The main difficulty in doing so lies in the task
of recognizing which are these intervals whose randomness is to be swapped
(i.e., to recognize what is the set S that corresponds to a run of the simulator
with ρ ∈ B as random tape).

The solution to this problem will be to inspect the intervals and reverse
the swapping of their randomness “inductively”. The reason for which the
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order of swapping is important is that V ∗’s answer in a specific interval also
depends on the randomness used to run the “most recent execution” of pre-
vious intervals (since, whenever we reach a specific interval, the outcome of
these “recent” runs appears in the history of the interaction). In order to be
able to say something meaningful about an interval’s run we must make sure
that, whenever we inspect the run of the simulator on this interval, the history
of the interaction up to the starting point of the interval is consistent with the
outcome of running the simulator with the bad tape ρ ∈ B that ρ′ “originates”
from. The process describing the mapping g−1 is depicted in Fig. 5.5.

Mapping g−1 : R −→ B × {0, 1}k × [δ1] × . . . × [δ|S|]

Input: A random tape ρ ∈ range(g) ⊆ R.
Output: A random tape ρ′ ∈ B, a set S ⊆ {1, . . . , k′} and a sequence u ∈

[δ1] × . . . × [δ|S|].

1. Set ρu0 ← ρ and S = φ.
2. For j = 1, . . . , k′:

a) Run the simulator given random tape ρu1,...,uj−1 and access to V ∗.
b) Find unique uj so that uth

j run of [aj , bj ] is “properly answered”.
c) If uj < δj :

i. Set S ← S ∪ {j}.
ii. Let ρw denote the portion of ρu1,...,uj−1 that is used in wth run of

[aj , bj ].
iii. Swap the locations of ρuj and ρδj within ρu1,...,uj−1 .
iv. Denote by ρu1,...,uj the resulting string.

d) Otherwise, continue to next j ∈ {1, . . . , k′}.
3. Output ρ′ = ρu1,...,u|S| , S and u = u1, . . . , u|S|.

Fig. 5.5. Mapping a “good” tape back to the original “bad” tape.

Since the tape ρ′ ∈ range(g) that we are trying to invert originates from
a bad tape ρ ∈ B then for every j ∈ {1, . . . , k′}, when using ρ as random
tape, the interval [aj , bj ] is aborted in all but the last runs of [aj , bj ], where by
last run we mean the last time [aj , bj ] is executed prior to the invocation of
prove(s, hists,�). Notice that, once prove(s, hists,�) is invoked, we can deter-
mine the value of δj by counting the number of times [aj , bj ] has been visited
from the time (V0) was visited until (p1) is reached. If it happens to be the
case that when using ρ′ as random tape the last (i.e., δth

j ) run of the currently
inspected interval [aj , bj ] is not properly answered, then we know that the
randomness of [aj , bj ] has been swapped by f and should be swapped back.

If along the way we preserve the “invariant” that the randomness used so
far is consistent with the original bad random tape ρ ∈ B then it must be the
case that, for the above interval, there exists a unique uj < δj so that the uth

j

run of [aj , bj ] is properly answered. We can thus swap the randomness used
for the uth

j run with the randomness used for the δth
j run. As soon as we reach
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the last special interval we know that the resulting tape is the original “bad”
random tape (since all along the way we have preserved the “invariant” that
the randomness used so far is consistent with the original ρ ∈ B).

All that remains in order to complete the proof, is to establish Item (1) of
Lemma 5.4.7. To do so, we will need to argue that for all ρ ∈ B it holds that
|f(ρ)| ≥ 2k−3d. This will be achieved by proving the following lemma.

Lemma 5.4.12 Let d = log2(m·(k+1)). Then, there exist values d1, . . . , d|S| ∈
{1, . . . , d} so that:

1. For all j ∈ S, it holds that δj = 2dj .
2.

∑
j∈S dj ≥ k′ − d.

Corollary 5.4.13 Let ρ ∈ B be a bad random tape. Then |f(ρ)| ≥ 2k−3d.

Proof By the definition of f : R −→ 2R and by Claim 5.4.11, we have:

|f(ρ)| =

∣∣∣∣∣ ⋃
u∈∆

{
hS(ρ, u)

}∣∣∣∣∣ =
∑
u∈∆

∣∣{hS(ρ, u)
}∣∣

Since |
{
hS(ρ, u)

}
| = 1, then the size of f(ρ) is in fact equal to the number of

u’s in ∆. The size of ∆
def= [δ1] × . . . × [δ|S|] is precisely

∏
j∈S δj , and so:

|f(ρ)| =
∏
j∈S

δj

=
∏
j∈S

2dj (5.9)

= 2
∑

j∈S
dj

≥ 2k′−d (5.10)

where (5.9) and (5.10) follow from items (1) and (2) of Lemma 5.4.12 respec-
tively. Since k′ = k − 2d, we get that |f(ρ)| ≥ 2k−3d, as required.

5.4.2 Special Intervals Are Visited Many Times

We now turn to prove Lemma 5.4.12. A central tool in the proof will be the
notion of the recursion tree. This is a full binary tree whose nodes correspond to
the rewind intervals as induced by the recursive calls of the solve procedure.
Every node [a, b] in the recursion tree has two descendants. Each one of the
descendants corresponds to one of the recursive calls made during some visit to
[a, b]. The root of the tree corresponds to a rewind interval of size m · (k+1).
At the bottom level of the recursion tree there are m · (k +1) nodes each
corresponding to distinct interval of length 2. In general, at the wth level of
the tree (out of d = log2(m · (k+1)) possible levels) there are 2w nodes, each
corresponding to a distinct interval of length m(k + 1)/2w+1.
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It can be seen that, for any two nodes labelled [a, b] and [a′, b′] in the
recursion tree, [a, b] is a descendant of [a′, b′] if and only if interval [a, b] is
contained in [a′, b′]. The distance of [a, b] from [a′, b′] is determined in the
straightforward manner by considering the distance between these nodes in
the binary tree. Recall that we are focusing on the scheduling as it appears in
hists,� (i.e., at the moment that prove(s, hists,�) is invoked). This scheduling
induces a specific labelling of the tree’s nodes according to the messages that
appear at each one of the rewind intervals at that time. It also determines
the identity of the nodes that correspond to minimal intervals, as well as the
nodes that correspond to special intervals. By Definition 5.4.9, nodes that
correspond to a special interval do not have any descendant that corresponds
to a minimal interval.

Let S ⊆ {1, . . . , k′} be the set of all indices j for which interval [aj , bj ] is
special. Let j ∈ S and let [Aj , Bj ] be the common ancestor of [aj−1, bj−1] and
[aj , bj ] in the recursion tree. That is, [Aj , Bj ] is the “deepest” node in the tree
that has both [aj−1, bj−1] and [aj , bj ] as descendants (this corresponds to the
smallest rewind interval that contains both [aj−1, bj−1] and [aj , bj ]).

Defining the dj’s – First Step. We are now ready to define the value of
the dj ’s. This will proceed in two steps. We first define a sequence of values
c1, . . . , c|S|. For any j ∈ S, the value of cj will reflect the overall number of
times that interval [aj , bj ] is visited after [aj′ , bj′ ] is last visited. We then turn
to show how to “correct” the values of the cj ’s so as to take into consideration
only those visits that have occurred before (p1) has been reached. The resulting
sequence of values d1, . . . , d|S| will then faithfully reflect the number of times
that [aj , bj ] is visited after [aj′ , bj′ ] is last visited (as required by the definition
of the δj ’s). The values c1, . . . , c|S| are defined as follows:

• If j = 1, then cj = 1.
• If j > 1, then cj equals to the distance of [aj , bj ] from [Aj , Bj ].

Notice that for all j ∈ S, it holds that cj ≥ 1. Figure 5.6 demonstrates the
way in which c1, . . . , c|S| are defined.

Claim 5.4.14 Let j ∈ S. Then, for every invocation of the common ancestor
of [aj−1, bj−1] and [aj , bj ], the number of times that [aj , bj ] is visited after
[aj−1, bj−1] is last visited is precisely 2cj .

Proof Let j ∈ S and let [Aj , Bj ] be the common ancestor of [aj−1, bj−1] and
[aj , bj ]. By definition, the value of cj equals the recursive depth of [aj , bj ] rela-
tive to [Aj , Bj ]. We thus know that for every invocation of interval [Aj , Bj ], the
interval [aj , bj ] is invoked precisely 2cj times. To see that all 2cj invocations of
[aj , bj ] occur after the last invocation of [aj−1, bj−1], we recall that [aj−1, bj−1]
and [aj , bj ] are contained in different halves of the common ancestor [Aj , Bj ].
By definition of the solve procedure, the two invocations of the second half
of an interval occur only after the two invocations of the first half have oc-
cured. Thus all 2cj invocations of [aj , bj ] (which occur as a result of the two



92 5 cZK in Logarithmically Many Rounds

 aj−1  [
(P(j−1)) � [
(V(j−1))  [

�bj−1
� [

(Pj) aj+1 aj [
(Vj)
(P(j+1)) �bj

[
(V(j+1))  [
(P(j+2))
(V(j+2)) � �bj+1

� [
aj+2

bj+2

Fig. 5.6. Diagram to demonstrate the definition of the cj ’s. In this example the
special intervals are [aj−1, bj−1], [aj , bj ] and [aj+2, bj+2] (and j +1 �∈ S). Notice
that the distance of [aj+2, bj+2] from its common ancestor with [aj , bj ] is 2, and so
cj+2 = 2 (the common ancestor being [aj+1, bj+1]). Similarly, the distance of [aj , bj ]
from its common ancestor with [aj−1, bj−1] is also 2 and so cj = 2.

recursive invocations of the second half of [Aj , Bj ]) occur after all invocations
of [aj−1, bj−1] (which occur as a result of the two recursive invocations of the
first half of [Aj , Bj ]).

Interfering Intervals. Consider any run of the simulator from the time that
message (V0) was visited until message (p1) is reached. Since this run involves
the exchange of messages (P0), (V0), (P1), (V1), . . . , (Pk), (Vk), then it must
have been caused by some invocation of an interval [A, B] that contains [aj , bj ]
for all j ∈ {1, . . . , k′}. Notice that for all j ∈ S the interval [A, B] contains
[Aj , Bj ]. In particular, for every j ∈ S, by the time that (p1) is reached, the
interval [Aj , Bj ] is invoked at least once. By, Claim 5.4.14, this implies that
for all j ∈ S, the number of times that [aj , bj ] is visited after the last visit of
[aj−1, bj−1] is precisely 2cj .

At first glance this seems to establish that δj = 2cj . However, this is not
necessarily true. The reason for this is that, by definition, the value of δj

reflects only the number of visits to [aj , bj ] before (p1) is reached. It might
very well be the case that not all of the 2cj runs of [aj , bj ] have occurred before
(p1) is reached.

Specifically, whenever the second half of the common ancestor [Aj , Bj ]
contains the message (p1), only one of its invocations will occur prior to
reaching (p1). This already cuts the number of visits to [aj , bj ] by a factor
of two. The situation is made even worse by the fact that every interval that
lies “in between” [Aj , Bj ] and [aj , bj ] and that contains (p1) can be invoked
at most once before reaching (p1) (such intervals are said to be interfering
to [aj , bj ]). Thus, the number of invocations of [aj , bj ] before (p1) is reached
decreases exponentially with the number of interfering intervals. For every
j ∈ S, let ej denote the number of intervals interfering with [aj , bj ]. Notice
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that for all j ∈ S, it holds that cj > ej (since for all j ∈ {1, . . . , k′} interval
[aj , bj ] does not contain (p1)).

 aj−1  [
(P(j−1)) � [
(V(j−1))  [

�bj−1
� [

(Pj) c aj [
(Vj) �bj

[
 [

(p1) � �d � [

Fig. 5.7. Diagram to demonstrate the definition of interfering intervals. In this
example the special intervals are [aj−1, bj−1] and [aj , bj ]. Notice that [c, d] lies “in
between” [aj , bj ] and its common ancestor with [aj−1, bj−1]. Since the interval [c, d]
contains (p1), then it is interfering with [aj , bj ]. This means that ej equals 1 (whereas
cj = 2), and that the number of invocations of [aj , bj ] prior to reaching (p1) (and
after visiting [aj−1, bj−1] for the last time) is equal to 2cj−ej = 2 (whereas, without
taking interference into account, it would have been 2cj = 4).

Claim 5.4.15 Let j ∈ S. Then, for every invocation of the common ancestor
of [aj−1, bj−1] and [aj , bj ], the number of times that [aj , bj ] is visited after
[aj−1, bj−1] is last visited and before (p1) is reached is precisely 2cj−ej .

Proof Sketch Let j ∈ S and let [Aj , Bj ] be the common ancestor of
[aj−1, bj−1] and [aj , bj ]. By definition, the number of “non-interfering” in-
tervals that: (1) are contained in [Aj , Bj ], (2) contain [aj , bj ] but, (3) do not
contain (p1), is exactly cj − ej . The key observation is that no such “non-
interfering” interval contains an interfering interval (since otherwise it would
have contained (p1) as well). Thus, prior to reaching (p1), all these intervals
are invoked at least twice by the interval containing them. This means that
the total number of invocations of [aj , bj ] (which is contained in all of these
intervals) is exactly 2cj−ej .

We are finally ready to define d1, . . . , d|S|. For any j ∈ S, let

dj
def= cj − ej

To complete the proof of Lemma 5.4.12 we need to prove the following claim.

Claim 5.4.16 Let d1, . . . , d|S| be defined as above. Then,∑
j∈S

dj ≥ k′ − d.
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Proof The proof is by induction on k′. For any choice of k′, let S ⊆
{1, . . . , k′}, {(cj , dj , ej)}j∈S be as above. We will show that for every k′ ≥ d, it
holds that

∑
j∈S(cj −ej) ≥ k′−d. We stress that throughout the proof, we do

not make use of any property of the schedule (besides using the “binary-tree
structure” and the depth, d, of the simulator’s execution).

Base Case (k′ = d + 1). Since |S| ≥ 1, and for all j ∈ S, it holds that
cj − ej > 0, we have: ∑

j∈S

(cj − ej) ≥ 1 = k′ − d.

Induction Step (k′ > d). Consider the k′ − 1 intervals that are obtained by
removing the index |S| (i.e., the index corresponding to the “latest” special
interval [a|S|, b|S|]). Let S′ ⊆ {1, . . . , k′} \ {|S|} denote the set of special in-
tervals after the removal of the index |S|. Notice that S ⊆ S′. This is because
any interval that was special before the removal of |S| will remain special
after the removal. Moreover, for all j ∈ S ∩ S′, the value of cj − ej has not
been changed by the removal of |S| (since it is always defined relative to the
“preceding” element in |S|). We now have two cases.

Case 1: There exists J ∈ S′ \ S so that the interval [aJ , bJ ] is special. That
is, by removing [a|S|, b|S|] we have caused [aJ , bJ ] to be special (even though
it was not special before). This could have happened only if the unique inter-
val previously contained by [aJ , bJ ] was [a|S|, b|S|] (otherwise, [aJ , bJ ] would
have not become special after removing [a|S|, b|S|]). In particular, [aJ , bJ ]
does not contain the intervals [a|S|−1, b|S|−1] (i.e., the special interval pre-
ceding [a|S|, b|S|]) and [A|S|, B|S|] (i.e., the common ancestor of [a|S|−1, b|S|−1]
and [a|S|, b|S|]). This means that both [aJ , bJ ] and [a|S|, b|S|] have the same
common ancestor with [a|S|−1, b|S|−1]. Since [aJ , bJ ] contains [a|S|, b|S|] then
c|S| > cJ . In addition, since the set of intervals interfering to [aJ , bJ ] is equal to
the set of intervals interfering to [a|S|, b|S|] then e|S| = eJ . As a consequence,
c|S| − e|S| > cJ − eJ . Using the induction hypothesis (for k′ − 1), we get:∑

j∈S

(cj − ej) =
∑

j∈S′\{J}
(cj − ej) + (c|S| − e|S|)

≥
∑

j∈S′\{J}
(cj − ej) + (cJ − eJ + 1)

≥
∑
j∈S′

(cj − ej) + 1

≥ (k′ − 1) − d + 1
= k′ − d.

Case 2: S′ = S. Using the induction hypothesis, and the fact that c|S|−e|S| >
0, we get:
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j∈S

(cj − ej) =
∑
j∈S′

(cj − ej) + (c|S| − e|S|)

≥
∑
j∈S′

(cj − ej) + 1

≥ (k′ − 1) − d + 1
= k′ − d.

In both cases, we obtain the desired result. This completes the proof of
Claim 5.4.16.
Using, Claims 5.4.15 and 5.4.16, we have:

1. For all j ∈ S, it holds that δj = 2dj .
2.

∑
j∈S dj ≥ k′ − d.

This completes the proof of Lemma 5.4.12.

5.5 Extensions

5.5.1 Applicability to Other Protocols

Theorem 5.1 is proved by adding an O(α(n) · log n)-round “preamble” to
the well-known three-round protocol for Hamiltonicity by Blum [18]. The
crucial property of Blum’s protocol that we need in order to prove concurrent
zero-knowledge is that it is a “challenge–response” type of protocol so that
the simulation task becomes trivial if the verifier’s “challenge” is known in
advance. Using the Prabhakharan–Rosen–Sahai preamble, it is possible to
transform any such protocol into concurrent zero-knowledge, while paying
only a logarithmic cost in the round complexity.

Denote by CRZK(r(·)) the class of all languages L ⊆ {0, 1}∗ having an
r(·)-round “challenge–response” interactive proof (resp. argument) system, so
that the simulation task becomes “trivial” if the verifier’s “challenges” are
known in advance. We now have the following theorem.

Theorem 5.2 (A generic transformation for CRZK) Let α : N → N be
any super-constant integer function, and let r : N → N be any integer
function. Then, assuming the existence of statistically hiding commitment
schemes (resp. one-way functions), every language L ∈ CRZK(r(·)) has an
(r(n) + O(α(n) · log n))-round concurrent zero-knowledge proof (resp. argu-
ment) system.

In light of Theorem 5.2, Construction 4.3.1 may be viewed as a generic trans-
formation that enhances such protocols and makes them secure in the concur-
rent setting with only a logarithmic increase in the round complexity. Exam-
ples for protocols satisfying the above property are the well known protocols
for graph 3-coloring [65], for proving the knowledge of a square root modulo
a composite [47], as well as the protocol for proving knowledge of discrete
logarithms modulo a prime [98].
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5.5.2 cZK Arguments Based on Any One-Way Function

Using Construction 4.1.1 as a building block, it is possible to obtain a cZK
argument system for Hamiltonicity, while assuming only the existence of one-
way functions. Since Hamiltonicity is NP-complete, it will follow that every
language in NP can be argued in cZK.

Construction 5.5.1 (A cZK argument system for HC)
Common input: a directed graph G = (V, E) with n

def
= |V |, and a parameter

k = k(n) (determining the number of rounds).
Auxiliary input to prover: a directed Hamiltonian cycle, C ⊂ E, in G.
First stage: This stage involves 2k + 2 rounds and is independent of the common

input G.
1. Prover’s preliminary step (P0): Uniformly select a first message for a (two-

round) statistically binding commitment scheme and send it to the verifier.
2. Verifier’s preliminary step (V0): Uniformly select σ ∈ {0, 1}n, and two se-

quences, {σ0
i,j}k

i,j=1, {σ1
i,j}k

i,j=1, each consisting of k2 random n-bit strings.
The sequences are chosen under the constraint that for every i, j the value
of σ0

i,j ⊕ σ1
i,j equals σ. Commit (using the statistically binding commit-

ment scheme) to all 2k2+1 selected strings. The commitments are denoted
β, {β0

i,j}k
i,j=1, {β1

i,j}k
i,j=1.

3. For j = 1, . . . , k:
a) Prover’s jth step (Pj): Uniformly select a k-bit string rj =

r1,j , . . . , rk,j ∈ {0, 1}k and send it to the verifier.
b) Verifier’s jth step (Vj): Reveal the values (preimages) of

β
r1,j

1,j , . . . , β
rk,j

k,j .
4. The prover proceeds with the execution if and only if for every

j ∈ {1, . . . , k}, the verifier has properly decommitted to the values of
σ

r1,j

1,j , . . . , σ
rk,j

k,j (i.e., that for every i ∈ {1, . . . , k}, σ
ri,j

i,j is a valid decom-

mittment of β
ri,j

i,j ).
Second stage: The prover and verifier engage in n (parallel) executions of a slightly

modified version of the basic Hamiltonicity protocol (described in Construc-
tion 4.1.1):
1. Prover’s first step (p1): Send the first message in the Hamiltonicity proof

system (i.e., n parallel copies of Step (p̂1) in Construction 4.1.1).
2. Verifier’s first step (v1): Send the value of σ, as well as the value of

all k2 commitments that have not been revealed in the first stage (i.e.,

{σ1−ri,j

i,j }k
i,j=1). In addition prove (using an ordinary zero-knowledge ar-

gument of knowledge) the knowledge of k + 1 strings, s, s1, . . . , sk, so that

Cs(σ) = β and Csj (σ
1−rj

j ) = β
1−rj

j for all j.
3. Prover’s second step (p2): Check that the zero-knowledge arguments given

by the verifier are accepting, and that the values of σ and {σ1−ri,j

i,j }k
i,j=1

sent by the verifier satisfy σ0
i,j ⊕ σ1

i,j = σ for all j. If so, send the third
message in the basic Hamiltonicity proof system (i.e., n parallel copies of
Step (p̂2) in Construction 4.1.1).

4. Verifier’s second step (v2): Conduct the verification of the prover’s proofs
(i.e., as described in Step (v̂2) of Construction 4.1.1), and accept if and
only if all corresponding conditions hold.
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Completeness and soundness of Construction 5.5.1 are proved in a similar
way to Construction 4.3.1. The main difference is in the proof of soundness.
This time, rather than using the statistical secrecy of the commitments used
in Step (V0) of Construction 4.3.1, we use the zero-knowledge property of
the argument used in Step (v1), as well as the computational secrecy of the
commitments used in Step (V0) of Construction 5.5.1. Details follow.

Claim 5.5.2 (Soundness) Suppose that the commitment used in Step (V0)
is computationally hiding. Further suppose that the interactive argument used
in Step (v1) is zero-knowledge. Then, Construction 5.5.1 is computationally
sound.

Proof Let G ∈ {0, 1}n \ HC, and let P ∗ be a cheating prover for Construc-
tion 5.5.1. Suppose that P ∗ succeeds in convincing the honest verifier V that
G is Hamiltonian with probability greater than 1/p(n) (for some polynomial
p(·)). Using P ∗ we construct a (polynomial time) cheating prover, P ∗∗, for the
basic Hamiltonicity proof system. P ∗∗ will succeed in convincing the honest
verifier VHC (i.e., the verifier strategy from Construction 4.1.1) with proba-
bility greater than 1/(2 · p(n)). This will be in contradiction to the soundness
property of Construction 4.1.1.

The cheating prover P ∗∗ starts by uniformly selecting σ ∈ {0, 1}n and two
sequences, {σ0

i,j}k
i,j=1, {σ1

i,j}k
i,j=1, each consisting of k2 random n-bit strings.

The prover next emulates an interaction between P ∗ and the verifier V of
Construction 5.5.1, while interacting with VHC in the following way. Playing
the role of V , the cheating prover P ∗∗ feeds P ∗ with (statistically-binding)
commitments to the 2k2 + 1 strings it has previously selected (i.e., as in
Step (V0) of Construction 5.5.1). These are denoted β, {β0

i,j}k
i,j=1, {β1

i,j}k
i,j=1.

The cheating prover then engages in an execution of the first stage of Con-
struction 5.5.1 together with P ∗. That is, for j = 1, . . . , k, given a string
rj = r1,j , . . . , rk,j , the cheating prover opens the commitments β

r1,j

1,j , . . . , β
rk,j

k,j

to the values σ
r1,j

1,j , . . . , σ
rk,j

k,j (just as the honest verifier of Construction 5.5.1
would have done). Notice that up to this point the execution of P ∗∗ does not
involve any interaction with VHC.

Upon finishing the execution of the first stage, the cheating prover P ∗∗

initiates an execution of the basic Hamiltonicity proof system by forwarding
the first Stage 2 message it receives from P ∗ (i.e., a (p1) message) to VHC.
Given VHC’s answer, denoted σ′ (i.e., a (v̂1) message), the cheating prover P ∗∗

sends over the value of σ′ along with with “consistent” values that correspond
to the opening of all commitments which were not opened during the execu-
tion of the first stage with P ∗ (specifically, P ∗∗ sends the values σ′⊕σ

1−ri,j

i,j ).
Using the simulator for the ZK argument of Step (v1), P ∗∗ proves that the
values σ′ and σ′ ⊕ σ

1−ri,j

i,j are indeed consistent with β, β
1−ri,j

i,j . By doing so
P ∗∗ is guaranteed that the generated Step (v2) is computationally indistin-
guishable from a “real” Step 2. This follows from the computational hiding
of the commitments used in Step (V0) as well as from the computational in-
distinguishability of the simulator’s output from real interactions between P ∗
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(playing the role of the verifier) and V (playing the role of the prover). As a
consequence, the transcript of the interaction between P ∗ and P ∗∗ (emulating
the role of V ) is computationally indistinguishable from the transcript of a
“real” interaction between P ∗ and V .

Since in such transcripts P ∗ makes V accept with probability greater than
1/p(n) (by our contradiction assumption), and since V accepts the second
stage if and only if VHC would have accepted the corresponding basic Hamil-
tonicity proof system (i.e., as described in Construction 4.1.1), we conclude
that P ∗∗ makes VHC accept with probability greater than 1/p(n) − neg(n) >
1/(2 · p(n)). This is in contradiction to the soundness property of Construc-
tion 4.1.1.

Combining the completeness and soundness properties, we get

Proposition 5.5.3 Suppose there exist one-way functions. Then Construc-
tion 5.5.1 constitutes an interactive argument system for Hamiltonicity.

Using the same simulator as the one used for Construction 4.3.1 and with some
more work on the analysis of its success probability and output distribution
(building on the soundness of the ZK argument used in Step (v1)), we obtain.

Theorem 5.3 (cZK argument) Suppose there exist one-way functions. Let
α : N → N be any super-constant function, and let k(n) = α(n) · log n. Then,
any instantiation of Construction 5.5.1 with parameter k = k(n) is concurrent
zero-knowledge.

5.5.3 Applicability to Resettable Zero-Knowledge

The results of this chapter also enable improvement in the round complex-
ity of resettable zero-knowledge [28]. Specifically, using a general transfor-
mation of (certain) concurrent zero-knowledge protocols into resettable zero-
knowledge [28], we obtain:

Theorem 5.4 (Resettable ZK) Suppose there exist statistically hiding com-
mitment schemes. (resp. one-way functions). Then, there exists an Õ(log n)-
round resettable zero-knowledge proof (resp. argument) system for every lan-
guage L ∈ NP.

Proof Sketch Theorem 5.4 is proved by employing a general transforma-
tion (by Canetti et al. [28]) that applies to a subclass of cZK protocols.
When applied to the cZK proof system presented in Construction 4.3.1 (as
well as Construction 5.5.1), the transformation yields a resettable ZK proof
(resp. argument) system. The class of protocols to which the [28] transforma-
tion applies is the class of admissible protocols. Loosely speaking, the class of
admissible protocols consists of all cZK protocols in which the first verifier
message “essentially determines” all its subsequent messages. What we mean
by “essentially determines” is that the only freedom retained by the verifier
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is either to abort (or act so that the prover aborts) or to send a practically
predetermined message. Recall that, in our case, the first verifier message is a
sequence of commitments that are revealed (i.e., decommitted) in subsequent
verifier steps. In such a case, the verifier’s freedom in subsequent steps is con-
fined to either send an illegal decommitment (which is viewed as aborting
and actually causes the prover to abort) or properly decommit to the prede-
termined value. It follows that our cZK protocol satisfies the “admissibility”
property required by [28], and can be thus transformed into resettable ZK.
For more details, see [28].

5.5.4 cZK Arguments with Poly-Logarithmic Efficiency

Another application is the existence of concurrent zero-knowledge arguments
with poly-logarithmic efficiency. Denote by cZK(r(·),m(·)) the class of all lan-
guages L ⊆ {0, 1}∗ having a zero-knowledge argument system, so that on com-
mon input x ∈ {0, 1}∗, the number of messages exchanged is at most r(|x|),
and the total length of the messages exchanged is at most m(|x|). In case that
m(n) = polylog(n), the argument system is said to have poly-logarithmic effi-
ciency. Zero-knowledge arguments with poly-logarithmic efficiency have been
constructed by Kilian [80], while assuming the existence of strong collision-
resistant hash functions (i.e., so that for some ε > 0 forming collisions with
probability greater than 2−kε

requires at least 2kε

time). We now have the
following theorem.

Theorem 5.5 (cZK with poly-logarithmic efficiency) Suppose there exist
strong collision-resistant hash functions. Then, NP is contained in the class
cZK(Õ(log), polylog). That is, for every language L ∈ NP, there exists an
Õ(log n)-round black-box concurrent zero-knowledge argument system with
poly-logarithmic efficiency.

Proof Sketch Theorem 5.5 is proved by applying the transformation referred
to in Sect. 5.5.1 to the protocol of Kilian [80] while using the techniques of
Construction 5.5.1. The theorem will follow by noting that the preamble of
Construction 5.5.1 can be constructed with polylogarithmic efficiency, and
that Kilian’s arguments satisfy the property required by Theorem 5.2. The
commitments used in Step (V0) of the preamble will be statistically binding
and will have polylogarithmic length (this is made possible by the fact that
the “challenges” in Kilian’s protocol are of polylogarithmic length). We note
that such commitments can be constructed assuming the existence of one-
way functions (whose existence is implied by the existence of strong collision-
resistant hash functions). The proof of soundness is essentially identical to the
proof of Claim 5.5.2. The key observation that enables the adaptation of the
proof to the current setting is the fact that the prover P ∗∗ runs in polynomial-
time (and thus yields contradiction to the computational soundness of Kilian’s
arguments).
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A Simple Lower Bound

As far as black-box simulation is concerned, the protocol presented in Chap. 5
is close to being optimal (at least in terms of round-complexity). In this chap-
ter we make a preliminary step towards demonstrating this fact. We will
show that the cZK property of “non-trivial” four-message protocols cannot
be demonstrated via black-box simulation.

The proof presented in this chapter and the proof establishing the impos-
sibility of black-box cZK protocol with significantly less than log n rounds
(presented in Chap. 7) have a lot in common. In particular, they share the
same high level structure. Thus, the current chapter can serve as a “gentle”
introduction to the considerably more complex result presented in Chap. 7.

Theorem 6.1 ([83]) Suppose that (P, V ) is a 4-message proof system for
a language L, and that concurrent executions of P can be simulated in
polynomial-time using black-box simulation. Then L ∈ BPP. This holds even
if the proof system is only computationally sound (with negligible soundness
error) and the simulation is only computationally indistinguishable (from the
actual executions).

The proof of Theorem 6.1 was originally established by Kilian, Petrank and
Rackoff [83], extending work of Goldreich and Krawczyk [63] on the impossibil-
ity of “non-trivial” three-message black-box ZK (i.e., negligible error protocols
for languages outside BPP). The proof utilizes a fixed scheduling of the con-
current executions, originally proposed by Dwork, Naor and Sahai [39]. The
actual presentation of the proof follows the one given by Rosen [97] (in a work
demonstrating the impossibility of non-trivial seven-message black-box cZK).

6.1 Proof of Theorem 6.1

At a high level, the proof proceeds by constructing a concurrent schedule
of sessions, and demonstrating that a black-box simulator cannot success-
fully generate a simulated accepting transcript for this schedule unless it
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“rewinds” the verifier many times. The work spent on these rewinds will be
super-polynomial (actually exponential) unless the number of rounds used by
the protocol obeys the bound, or L ∈ BPP.

6.1.1 Schedule, Adversary Verifiers and Decision Procedure

For each x ∈ {0, 1}n, we consider the following concurrent scheduling of n
sessions all run on common input x. The scheduling is defined recursively,
where the scheduling of m sessions (denoted Rm) proceeds in three phases:

First phase: The first session exchanges two messages (i.e., v1, p1).
Second phase: The schedule is applied recursively on the next m−1 sessions.
Third phase: The first session exchanges two messages (i.e., v2,p2).

(a) (b)

1 2 m

v1
p1

⇐⇒
⇐⇒ . . .

⇐⇒
⇐⇒

. . .

⇐⇒
v2
p2

⇐⇒

1 2 m

v1
p1

⇐⇒

Rm−1

v2
p2

⇐⇒

Fig. 6.1. The schedule. Columns correspond to n individual sessions and rows cor-
respond to the time progression. (a) Depicts the schedule explicitly. (b) Depicts the
schedule in a recursive manner (Rm denotes the recursive schedule for m sessions).

Definition 6.1.1 (Identifiers of next message) The fixed schedule defines a
mapping from partial execution transcripts ending with a prover message
to the identifiers of the next verifier message; that is, the session and round
number to which the next verifier message belongs. (Recall that such par-
tial execution transcripts correspond to queries of a black-box simulator
and so the mapping defines the identifier of the answer.) For such a query
q = (a1, b1, ..., at, bt, at+1), we let πsn(q) ∈ {1, ..., n} denote the session to
which the next verifier message belongs, and by πmsg(q) ∈ {1, 2} its index
within the verifier’s messages in this session.

Definition 6.1.2 (Initiation prefix) The initiation prefix ip of a query q
is the prefix of q ending with the prover’s initiation message of session
πsn(q). More formally, ip = a1, b1, ..., a�, b�, a�+1, is the initiation prefix of
q =(a1, b1, ..., at, bt, at+1) if a�+1 is of the form p

(i)
1 for i=πsn(q). (Note that

πmsg(q) may be any index in {1, 2}, and that at+1 need not belong to session i.)
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Definition 6.1.3 (Prover sequence) The prover sequence of a query q is the
sequence of all prover messages in session πsn(q) that appear in the query q.
The length of such a sequence is πmsg(q) ∈ {1, 2}.

We consider what happens when a black-box simulator (for the above sched-
ule) is given oracle access to a verifier strategy Vh defined as follows (depending
on a hash function h and the input x).

The Verifier Strategy Vh

On query q = (a1, b1, ..., at, bt, at+1), where the a’s are prover messages (and
x is implicit in Vh), the verifier answers as follows:

1. First, Vh checks if the execution transcript given by the query is legal (i.e.,
consistent with Vh’s prior answers), and answers with an error message if
the query is not legal. (In fact this is not necessary since by our convention
the simulator only makes legal queries. From now on we ignore this case.)

2. More importantly, Vh checks whether the query contains the transcript of
a session in which the last verifier message indicates rejecting the input.
In case such a session exists, Vh refuses to answer (i.e., answers with some
special “refuse” symbol).

3. Next, Vh determines the initiation prefix, denoted a1, b1, ..., a�, b�, a�+1,
of query q. It also determines i = πsn(q), j = πmsg(q), and the prover
sequence of query q, denoted p

(i)
1 , ..., p

(i)
j .

4. Finally, Vh determines ri = h(a1, b1, ..., a�, b�, a�+1) (as coins to be used by
V ), and answers with the message V (x, ri; p

(i)
1 , ..., p

(i)
j ) that would have

been sent by the honest verifier on common input x, random-pad ri, and
prover’s messages p(i)

1 , ..., p
(i)
j .

Assuming towards the contradiction that a black-box simulator, denoted S,
contradicting Theorem 6.1 exists, we now describe a probabilistic polynomial-
time decision procedure for L, based on S. Recall that we may assume that
S runs in strict polynomial time: we denote such time bound by tS(·). On
input x ∈ L ∩ {0, 1}n and oracle access to any (probabilistic polynomial-
time) V ∗, the simulator S must output transcipts with distribution having
computational deviation of at most 1/6 from the distribution of transcripts
in the actual concurrent executions of V ∗ with P .

A Slight Modification of the Simulator. Before presenting the procedure,
we slightly modify the simulator so that it never makes a query that is refused
by a verifier Vh. Note that this condition can be easily checked by the simu-
lator, and that the modification does not affect the simulator’s output. From
this point on, when we talk of the simulator (which we continue to denote by
S) we mean the modified one.
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The Decision Procedure for L

On input x ∈ {0, 1}n, proceed as follows:

1. Uniformly select a function h out of a small family of tS(n)-wise inde-
pendent hash functions mapping poly(n)-bit long sequences to ρV (n)-bit
sequences, where ρV (n) is the number of random bits used by V on an
input x ∈ {0, 1}n.

2. Invoke S on input x providing it black-box access to Vh (as defined above).
That is, the procedure emulates the execution of the oracle machine S on
input x along with emulating the answers of Vh.

3. Accept iff all sessions in the transcript output by S are accepting.

By our hypothesis, the above procedure runs in probabilistic polynomial-time.
We next analyze its performance.

Lemma 6.1.4 (Performance on yes-instances) For all but finitely many x ∈
L, the above procedure accepts x with probability at least 2/3.

Proof Sketch The key observation is that for uniformly selected h, the
behavior of Vh in actual (concurrent) interactions with P is identical to the
behavior of V in such interactions. The reason is that, in such actual in-
teractions, a randomly selected h determines uniformly and independently
distributed random-pads for all n sessions. Since with high probability (say
at least 5/6), V accepts in all n concurrent sessions, the same must be true
for Vh, when h is uniformly selected. Since the simulation deviation of S is at
most 1/6, it follows that for every h the probability that SVh(x) is a transcript
in which all sessions accept is lower bounded by ph − 1/6, where ph denotes
the probability that Vh accepts x (in all sessions) when interacting with P .
Taking expectation over all possible h’s, the lemma follows.

Lemma 6.1.5 (Performance on no-instances) For all but finitely many x �∈
L, the above procedure rejects x with probability at least 2/3.

We can actually prove that for every polynomial p and all but finitely many
x �∈ L, the above procedure accepts x with probability at most 1/p(|x|). As-
suming towards the contradiction that this is not the case, we will construct
a (probabilistic polynomial-time) strategy for a cheating prover that fools the
honest verifier V with success probability at least 1/poly(n) (in contradic-
tion to the computational-soundness of the proof system). Loosely speaking,
the argument capitalizes on the fact that rewinding of a session requires the
simulator to work on a new simulation subproblem (one level down in the
recursive construction). New work is required since each different message for
the rewinded session forms an unrelated instance of the simulation subprob-
lem (by virtue of definition of Vh). The schedule causes work involved in such
rewinding to accumulate to too much, and so it must be the case that the
simulator does not rewind some (full instance of some) session. In this case
the cheating prover may use such a session in order to fool the verifier.
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6.1.2 Proof of Lemma 6.1.5

Let us fix an x ∈ {0, 1}n \ L as above.1 Define by AC = ACx the set of pairs
(σ, h) so that on input x, coins σ and oracle access to Vh, the simulator outputs
a transcript, denoted SVh

σ (x), in which all n sessions accept. Recall that our
contradiction assumption is that Prσ,h[(σ, h) ∈ AC] > 1/p(n), for some fixed
polynomial p(·).

The Cheating Prover

The cheating prover starts by uniformly selecting a pair (σ, h) and hoping
that (σ, h) is in AC. It next selects uniformly an element 
 in {1, ..., qS(n)},
where qS(n) < tS(n) is a bound on the number of queries made by S on input
x ∈ {0, 1}n. The prover next emulates an execution of S

Vh′
σ (x) (where h′,

which is essentially equivalent to h, will be defined below), while interacting
with the honest verifier V . The prover handles the simulator’s queries as well
as the communication with the verifier as follows: Suppose that the simulator
makes query q = (a1, b1, ..., at, bt, at+1), where the a’s are prover messages.

1. Operating as Vh, the cheating prover first determines the initiation prefix,
ip corresponding to the current query q. Let ip = a1, b1, ..., a�, b�, a�+1,
(Note that by our convention and the modification of the simulator there
is no need to perform Steps 1 and 2 of Vh.)

2. If ip is the 
th distinct initiation prefix resulting from the simulator’s
queries so far then the cheating prover operates as follows:
a) The cheating prover determines i = πsn(q), j = πmsg(q), and the

prover sequence of q, denoted p
(i)
1 , ..., p

(i)
j (as done by Vh in Step 3).

b) If the cheating prover has only sent j−1 messages to the actual verifier
then it forwards p

(i)
j to the verifier, and feeds the simulator with the

verifier’s response (i.e., which is of the form v
(i)
j ).2

c) If the cheating prover has already sent j messages to the actual verifier,
the prover retrieves the jth message it has received and feeds it to the
simulator.3

1In a formal proof we need to consider infinitely many such x’s.
2We comment that by our conventions regarding the simulator, it cannot be the

case that the cheating prover has sent less than j−1 messages to the actual verifier:
The prefixes of the current query dictate j − 1 such messages.

3 We comment that the cheating prover may fail to conduct Step 2c. This will
happen whenever the simulator makes two queries with the same initiation prefix
and the same number of prover messages in the corresponding session, but with a
different sequence of such messages. Whereas this will never happen when j = 1 (as

once the initiation prefix is fixed then so is the value of p
(i)
1 ), it may very well be the

case that for j ∈ {2, 3} a previous query regarding initiation prefix ip had a different

p
(i)
j message. In such a case the cheating prover will indeed fail. The punchline of

the analysis is that with noticeable probability this will not happen.
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3. If ip is NOT the 
th distinct initiation prefix resulting from the queries so
far then the prover emulates Vh in the obvious manner (i.e., as in Step 4
of Vh): it first determines ri = h(a1, b1, ..., a�, b�, a�+1), and then answers
with V (x, ri; p

(i)
1 , ..., p

(i)
j ), where all notations are as above.

Defining h′ (Mentioned Above): Let (σ, h) and 
 be the initial choices
made by the cheating prover, and suppose that the honest verifier uses coins
r. Then, the function h′ is defined to be uniformly distributed among the
functions h′′ which satisfy the following conditions. The value of h′′ on the

th initiation prefix equals r, whereas for every 
′ �= 
, the value of h′′ on the

′th initiation prefix equals the value of h on this prefix. (Here we use the hy-
pothesis that the functions are selected in a family of tS(n)-wise independent
hash functions. We note that replacing h by h′ does not effect Step 3 of the
cheating prover, and that the prover does not know h′.)

The probability that the cheating prover makes the honest verifier accept
is lower bounded by the probability that both (σ, h′) ∈ AC and the messages
forwarded by the cheating prover in Step 2 are consistent with an accepting
conversation with Vh′ . For the latter event to occur, it is necessary that the 
th

distinct initiation prefix will be useful (in the sense hinted above and defined
now). It is also necessary that ζ was “successfully” chosen (i.e., that the 
th

initiation prefix is accepted by Vh′).

Definition 6.1.6 (Accepting query) A query q = (a1, b1, ..., at, bt, at+1) is
said to be accepting if Vh′(a1, b1, ..., at, bt, at+1) equals 1 (i.e., session πsn(q)
is accepted by Vh′). (Note that this implicitly implies that πmsg(q) = 2.)

Definition 6.1.7 (Useful initiation prefix) A specific initiation prefix ip in
an execution of S

Vh′
σ (x) is called useful if the following conditions hold:

1. During its execution, S
Vh′
σ (x) made at least one accepting query that cor-

responds to the initiation prefix ip.
2. The number of different prover sequences that correspond to ip that were

made during the execution of S
Vh′
σ (x) is at most 2, and these prover se-

quences are prefixes of one another.

Otherwise, the prefix is called unuseful.

The Success Probability

Define a Boolean indicator χ(σ, h′, 
) to be true if and only if the 
th distinct
initiation prefix in an execution of S

Vh′
σ (x) is useful. It follows that if the

cheating prover happens to select (σ, h, 
) so that χ(σ, h′, 
) holds then it
convinces V (x, r); the first reason being that there exists a query with the 
th

initiation prefix is answered by an accept message4, and the second reason
4We use the fact that V (x, r) behaves exactly as Vh′(x) behaves on queries for

the 
th distinct initiation prefix.
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being that the emulation does not get into trouble (in Step 2c). To see this,
notice that all the queries having the 
th distinct initiation prefix have prover
sequences that are prefixes of one another (which implies that the cheating
prover never has to forward such queries to the verifier twice). Thus, the
probability that when selecting (σ, h, 
) the cheating prover convinces V (x, r)
is at least:

Pr [χ(σ, h′, 
)] ≥ Pr [(σ, h′) ∈ AC & χ(σ, h′, 
)] (6.1)

Using the fact that, for every value of 
 and σ, when h and r are uniformly
selected the function h′ is uniformly distributed, we infer that 
 is distributed
independently of (σ, h′). Thus, (6.1) is lower bounded by

Pr[(σ, h′) ∈ AC] · Pr[∃i s.t. χ(σ, h′, i) | (σ, h′) ∈ AC]
qS(n)

(6.2)

where qS(n) = poly(n) is the bound used by the cheating prover (for the
number of distinct queries/initiation prefixes in the execution). Thus, (6.2) is
noticeable (i.e., at least 1/poly(n)) provided that so is the value of

Pr[∃i s.t. χ(σ, h′, i) | (σ, h′) ∈ AC]

The rest of the proof is devoted to establishing the last hypothesis. In fact we
prove a much stronger statement:

Lemma 6.1.8 For every (σ, h′) ∈ AC, the execution of S
Vh′
σ (x) contains a

useful initiation prefix (that is, there exists an i s.t. χ(σ, h′, i) holds).

6.1.3 Existence of Useful Initiation Prefixes

The proof of Lemma 6.1.8 is by contradiction. We assume the existence of a
pair (σ, h′) ∈ AC so that all initiation prefixes in the execution of S

Vh′
σ (x) are

unuseful and show that this implies that S
Vh′
σ (x) made at least 2n � poly(n)

queries which contradicts the assumption that it runs in polynomial time.

The Query-and-Answer Tree

Throughout the rest of the proof, we fix an arbitrary (σ, h′) ∈ AC so that all
initiation prefixes in the execution of S

Vh′
σ (x) are unuseful, and study this ex-

ecution. A key vehicle in this study is the notion of a query-and-answer tree.
This is a rooted tree in which vertices are labelled with verifier messages and
edges are labelled by prover’s messages. The root is labelled by the empty
string, and it has outgoing edges corresponding to the possible prover’s mes-
sages initializing the first session. In general, paths down the tree (i.e., from
the root to some vertices) correspond to queries. The query associated with
such a path is obtained by concatenating the labelling of the vertices and edges
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Fig. 6.2. The query-and-answer tree. (a) Interaction with P . (b) Simulation.

in the order traversed. We stress that each vertex in the tree corresponds to
a query actually made by the simulator.

Satisfied Subpath. A subpath from one node in the tree to some of its
descendants is said to satisfy session i if the subpath contains edges (resp.,
vertices) for each of the messages sent by the prover (resp., verifier) in session
i, and if the last such message (i.e., v(i)

2 ) indicates that the verifier accepts
session i. A subpath is called satisfied if it satisfies all sessions for which the
first prover’s message appears on the subpath.

Forking Subtree. For any i, we say that a subtree i-forks if it contains two
subpaths, p and r, having the same initiation prefix, so that

1. p and r differ in the edge representing the p
(i)
1 message for session i.

2. Each of p and r reaches a vertex representing the v
(i)
2 message.

In such a case, we may also say that the subtree i-forks on p (or on r).

Good Subtree. Consider an arbitrary subtree rooted at a vertex correspond-
ing to the first message in some session so that this session is the first at some
level of the recursive construction of the schedule. The full tree is indeed such
a tree, but we will need to consider subtrees which correspond to m sessions in
the recursive schedule construction. We call such a subtree m-good if it con-
tains a subpath satisfying all m sessions for which the prover’s first message
appears in the subtree (all these first messages are in particular contained in
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the subpath). Since (σ, h′) ∈ AC it follows that the full tree contains a path
from the root to a leaf representing an accepting transcript. The path from
the root to this leaf thus satisfies all sessions (i.e., 1 through n) which implies
that the full tree is n-good.

The Structure of Good Subtrees. The crux of the entire proof is given in
the following lemma.

Lemma 6.1.9 Let T be an m-good subtree. Then, T contains at least two
different (m − 1)-good subtrees.

Denote by W (m) the size of an m-good subtree (where W (m) stands for the
work actually performed by the simulator on m concurrent sessions in our
fixed scheduling). It follows (from Lemma 6.1.9) that any m-good subtree
must satisfy

W (m) ≥
{

2 if m = 1
2 · W (m − 1) if m > 1.

(6.3)

Since 6.3 solves to W (n) = 2n (proof omitted), and since every vertex in the
query-and-answer tree corresponds to a query actually made by the simulator,
then the assumption that the simulator runs in poly(n)-time (and hence the
tree is of poly(n) size) is contradicted. Thus, Lemma 6.1.8 follows from Lemma
6.1.9.

6.1.4 The Structure of Good Subtrees

We now prove Lemma 6.1.9. Considering the m sessions corresponding to an
m-good subtree, we focus on the single session dealt explicitly at this level of
the recursive construction.

Claim 6.1.10 Let T be an m-good subtree, and let i ∈ [n] be the index of the
first session in the corresponding subschedule. Then, the subtree i-forks.

Proof Let pi be the first subpath reached during the execution of S
Vh′
σ (x)

which satisfies session i (since the subtree is m-good such a subpath must
exist, and since session i belongs to the corresponding subschedule every such
subpath must be contained in the subtree). Recall that by the contradiction
assumption for the proof of Lemma 6.1.8, all initiation prefixes in the execution
of S

Vh′
σ (x) are unuseful. In particular, the initiation prefix corresponding to

subpath pi is unuseful. Still, path pi contains vertices for each prover message
in session i and contains an accepting message by the verifier. So the only thing
which may prevent the above initiation prefix from being useful is having two
(non-terminating) queries with the very same initiation prefix ipi so that these
queries have different (non-terminating) prover sequences of the same length.
Note that these sequences must differ at their second element (i.e., a p

(i)
2

message). This is because the prover sequences are non-terminating and the
first prover message, p(i)

1 , is constant once the initiation prefix is fixed. Also
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note that the two (non-terminating) queries were answered by the verifier
(rather than refused), since the (modified) simulator avoids queries which will
be refused. By associating a subpath to each one of the above queries we
obtain two different subpaths (having the same initiation prefix), that differ
in their p(i)

2 edge and eventually reach a v
(i)
2 vertex.

Claim 6.1.11 If the subtree i-forks, then the subtree contains at least two
different (m − 1)-good subtrees.

Proof Suppose that the subtree i-forks. Then, there exist two subpaths, pi

and ri, that differ in the edge representing a p
(i)
1 message, and that eventually

reach some v
(i)
2 vertex. In particular, paths pi and ri split from each other

before the edge which corresponds to the p(i)
1 message occurs along these paths

(as otherwise the p(i)
1 edge would have been identical in both paths). By nature

of the fixed scheduling, the vertex in which the above splitting occurs precedes
the first message of all (nested) sessions in the recursive construction (that
is, sessions i + 1, . . . , n). It follows that both pi and ri contain the first and
last messages of each of these (nested) sessions (as they both reach a v

(i)
2

vertex). Therefore, by definition of Vh, all these sessions must be satisfied by
both these paths (or else Vh would have not answered with a v

(i)
2 message but

rather with a “refuse” symbol). Consider now the corresponding subpaths of
pi and ri which begin at edge p

(i+1)
1 (i.e., with the edge that corresponds

to the first message of the first session in the second recursive construction).
Each of these new subpaths is contained in a disjoint subtree corresponding
to the recursive construction, and satisfies all of its m − 1 sessions. It follows
that the (original) subtree contains two different (m − 1)-good subtrees.

By combining Claims 6.1.10 and 6.1.11 we infer that if T is m-good then it
contains at least two distinct (m−1)-good subtrees. This completes the proof
of Lemma 6.1.9 which in turn implies Lemmata 6.1.8 and 6.1.5. The proof of
Theorem 6.1 is complete.
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Black-Box cZK Requires Logarithmically
Many Rounds

In this chapter we show that the analysis of the PRS protocol from Chap. 5
is essentially optimal with respect to black-box simulation. Specifically, we
present an Ω(log n/ log log n) lower bound on the round-complexity of black-
box cZK. This almost matches the round-complexity obtained in Chap. 5.

Theorem 7.1 ([30]) Let r : N → N be a function so that r(n) = o( log n
log log n ).

Suppose that 〈P, V 〉 is an r(·)-round black-box concurrent zero-knowledge proof
system for L. Then L ∈ BPP. The theorem holds even if 〈P, V 〉 is only
computationally sound (with negligible soundness error) and the simulation is
only computationally indistinguishable (from the actual executions).

The proof of Theorem 7.1 is based on the work of Canetti, Kilian, Pe-
trank and Rosen [30], which in turn builds on the works of Goldreich and
Krawczyk [63], Kilian, Petrank and Rackoff [83], and Rosen [97]. On a high
level, the proof proceeds by constructing a specific concurrent schedule of ses-
sions, and demonstrating that a black-box simulator cannot successfully gen-
erate an accepting transcript for this schedule unless it “rewinds” the verifier
many times. The work spent on these rewindings will be super-polynomial un-
less the number of rounds used by the protocol obeys the bound, or L ∈ BPP.

While the general outline of the proof remains roughly the same as the
proof presented in Chap. 6, the actual schedule of sessions, and its analysis,
are different. One main idea that, together with other ideas, enables the proof
of the bound is to have the verifier abort sessions depending on the history of
the interaction. A more detailed outline, presenting both the general structure
and the new ideas in the proof, appears in the next section.

Remark. Theorem 7.1 is actually stronger than stated. It will hold even if
the simulator knows the scheduling of messages in advance (in particular, it
knows the number of concurrent sessions), and even if the schedule of the
messages does not change dynamically (as a function of the history of the
interaction). Moreover, the actual scheduling and the number of sessions are
known even before the protocol itself is determined.
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7.1 Proof Outline

This section contains an outline of the proof of Theorem 7.1. The actual proof
will be given in Sects. 7.2 and 7.3. To facilitate reading, we partition the outline
into two parts: The first part reviews the general framework. (This part mainly
follows previous works, namely [63, 83, 97].) The second part concentrates on
the actual schedule and the specifics of our lower bound argument.

7.1.1 The High-Level Framework

Consider a k-round concurrent zero-knowledge proof system 〈P, V 〉 for lan-
guage L, and let S be a black-box simulator for 〈P, V 〉. We use S to construct
a BPP decision procedure for L. For this purpose, we construct a family {Vh}
of “cheating verifiers”. To decide on an input x, run S with a cheating verifier
Vh that was chosen at random from the constructed family, and decide that
x ∈ L iff S outputs an accepting transcript of Vh.

The general structure of the family {Vh} is roughly as follows. A member
Vh in the family is identified via a hash function h taken from a hash-function
family H having “much randomness” (or high independence). Specifically, the
independence of H will be larger than the running time of S. This guarantees
that, for our purposes, a function drawn randomly from H behaves like a
random function. We define some fixed concurrent schedule of a number of
sessions between Vh and the prover. In each session, Vh runs the code of the
honest verifier V on input x and random input h(a), where a is the current
history of the (multisession) interaction at the point where the session starts.
Vh accepts if all the copies of V accept.

The proof of validity of the decision procedure is structured as follows. Say
that S succeeds if it outputs an accepting transcript of Vh. It is first claimed
that if x ∈ L then a valid simulator S must succeed with high probability.
Roughly speaking, this is so because each session behaves like the original
proof system 〈P, V 〉, and 〈P, V 〉 accepts x with high probability. Demonstrat-
ing that the simulator almost never succeeds when x /∈ L is much more in-
volved. Given S we construct a “cheating prover” P ∗ that makes the honest
verifier V accept x with probability that is polynomially related to the suc-
cess probability of S. The soundness of 〈P, V 〉 now implies that in this case S
succeeds only with negligible probability. See details below.

Session Prefixes and Useful Session Prefixes. In order to complete the
high-level description of the proof, we must first define the following notions
that play a central role in the analysis. Consider the conversation between Vh

and a prover. A session prefix a is a prefix of this conversation that ends at the
point where some new session starts (including the first verifier message in that
session). (Recall that V ’s random input for that new session is set to h(a).)
Next, consider the conversation between S and Vh in some run of S. (Such a
conversation may contain many interleaved and incomplete conversations of
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Vh with a prover.) Roughly speaking, a message sent by S to the simulated
Vh is said to have session prefix a if it relates to the session where the verifier
randomness is h(a). A session prefix a is called useful in a run of S if:

1. It was accepted (i.e., Vh sent an ACCEPT message for session prefix a).
2. Vh has sent exactly k + 1 messages for session prefix a.

Loosely speaking, Condition 2 implies that S did not rewind the relevant
session prefix, where rewind session prefix a is an informal term meaning that
S rewinds Vh to a point where Vh provides a second continuation for session
prefix a. By rewinding session prefix a, the simulator is able to obtain more
than k + 1 verifier messages for session prefix a. This is contrast to an actual
execution of the protocol 〈P, V 〉 in which V sends exactly k + 1 messages.

The Construction of the Cheating Prover. Using the above terms, we
sketch the construction of the cheating prover P ∗. It first randomly chooses
a function h

r←H and an index (of a session prefix) i. It then emulates an
interaction between S and Vh, with the exception that P ∗ uses the messages
sent by S that have the ith session prefix as the messages that P ∗ sends to the
actual verifier it interacts with; similarly, it uses the messages received from
the actual verifier V instead of Vh’s messages in the ith session prefix. The
strategy of the cheating prover is depicted in Fig. 7.1.

S Vh

Emulated interaction
between S and Vh

(Multiple sessions)
P ∗

Actual interaction
between P ∗ and V

(Single session)

V

Fig. 7.1. Describes the strategy of the cheating prover P ∗. The box on the left-hand
side represents the (multiple session) emulation of the interaction between S and Vh

(executed “internally” by P ∗). The box on the right-hand side represents the actual
execution of a single session between P ∗ and V . (Recall that P ∗ relays some of the
actual interaction messages to its internal emulation.)

The Success Probability of the Cheating Prover. We next claim that
if the session prefix chosen by P ∗ is useful, then 〈P ∗, V 〉(x) accepts. The key
point is that whenever P ∗ chooses a useful session prefix, the following two
conditions (corresponding to the two conditions in the definition of a useful
session prefix) are satisfied:
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1. The session corresponding to the ith session prefix is accepted by Vh (and
so by V ).

2. P ∗ manages to reach the end of the 〈P ∗, V 〉 interaction without “getting
into trouble”.1

Loosely speaking Item (1) is implied by Condition (1) in the definition of a
useful session prefix. As for Item (2), this just follows from the fact that S does
not rewind the ith session prefix (as implied by Condition (2) in the definition
of a useful session prefix). In particular, P ∗ (playing the role of Vh) will not
have to send the jth verifier message with the ith session prefix more than
once to S (since the number of messages sent by Vh for that session prefix is
exactly k + 1).

Since the number of session prefixes in an execution of S is bounded by a
polynomial, it follows that if the conversation between S and Vh contains a
useful session prefix with non-negligible probability, then 〈P ∗, V 〉(x) accepts
with non-negligible probability.

7.1.2 The Schedule and Additional Ideas

Using the above framework, the crux of the lower bound is to come up with
a schedule and Vh’s that allow demonstrating that whenever S succeeds, the
conversation between S and Vh contains a useful session prefix (as we have
argued above, it is in fact sufficient that the conversation between S and
Vh contains a useful session prefix with non-negligible probability). This is
done next.

The Two-Round Case. Our starting point is the schedule used in [83] to
demonstrate the impossibility of black-box concurrent zero-knowledge with
protocols in which four messages are exchanged (i.e., v1, p1, v2, p2). The sched-
ule is recursive and consists of n concurrent sessions (n is polynomially re-
lated to the security parameter). Given parameter m ≤ n, the scheduling
on m sessions (denoted Rm) proceeds as follows (see Fig. 7.2 for a graphical
description):

1. If m = 1, the relevant session exchanges all of its messages (i.e., v1, p1, v2, p2).
2. Otherwise (i.e., if m > 1):

Initial message exchange: The first session (out of m) exchanges 2
messages (i.e., v1, p1);

Recursive call: The schedule is applied recursively on the remaining
m − 1 sessions;

Final message exchange: The first session (out of m) exchanges 2
messages (i.e., v2, p2).

1The problem is that P ∗ does not know V ’s random coins, and so it cannot
compute the verifier’s answers by himself. Thus, whenever P ∗ is required in the
emulation to send the jth verifier message in the protocol more than once to S it
might get into trouble (since it gets the jth verifier message only once from V ).
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At the end of each session Vh continues in the interaction if and only if the
transcript of the session that has just terminated would have been accepted
by the prescribed verifier V . This means that in order to proceed beyond the
ending point of the 
th session, the simulator must make the honest verifier
accept the sth session for all s > 
.

(a) (b)

1 2 m

v1
p1

⇐⇒
⇐⇒ . . .

⇐⇒
⇐⇒

. . .

⇐⇒
v2
p2

⇐⇒

1 2 m

v1
p1

⇐⇒

Rm−1

v2
p2

⇐⇒

Fig. 7.2. The “telescopic” schedule used to demonstrate impossibility of black-
box concurrent zero-knowledge in two rounds. Columns correspond to n individual
sessions and rows correspond to the time progression. (a) Depicts the schedule ex-
plicitly. (b) Depicts the schedule in a recursive manner (Rm denotes the recursive
schedule for m sessions).

Suppose now that S succeeds in simulating the above Vh but the con-
versation between S and Vh does not contain a useful session prefix. Since
Vh proceeds beyond the ending point of a session only if this session is ac-
cepted, then the only reason for which the corresponding session prefix can be
non-useful is because S has rewound that session prefix. Put in other words,
a session prefix becomes non-useful if and only if S resends the first prover
message in the protocol (i.e., p1).

2 This should cause Vh to resend the second
verifier message (i.e., v2), thus violating Condition (2) in the definition of a
useful session prefix.

The key observation is that whenever the first prover message in the 
th

session is modified, then so is the session prefix of the sth session for all s > 
.

2Notice that the first prover message in the protocol (i.e., p1) is the only place
in which rewinding the interaction may cause a session prefix to be non-useful. The
reason for this is that the first verifier message in the protocol (i.e., v1) is part of
the session prefix. Rewinding past this message (i.e., v1) would modify the session
prefix itself. As for p2, it is clear that rewinding this message would not cause any
change in verifier messages that correspond to the relevant session prefix (since, v1

and v2 occur after p2 anyway).
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Thus, whenever S resends the first prover message in the 
th session, it must
do so also in the sth session for all s > 
 (since otherwise the “fresh” session
prefix of the sth session, that is induced by resending the above message, will
be useful). But this means that the work W (m), invested in the simulation of
a schedule with m levels, must satisfy W (m) ≥ 2 ·W (m− 1) for all m. Thus,
either the conversation between Vh and S contains a useful session prefix (in
which case we are done), or the simulation requires exponential-time (since
W (m) ≥ 2 · W (m − 1) solves to W (n) ≥ 2n−1).

The k-round Case – First Attempt. A first attempt to generalize this
schedule to the case of k rounds may proceed as follows. Given parameter
m ≤ n do:

1. If m = 1, the relevant session exchanges all of its messages (i.e., v1, p1,
. . . , vk+1, pk+1).

2. Otherwise, for j = 1, . . . , k + 1:
Message exchange: The first session (out of m) exchanges two mes-

sages (i.e., vj , pj);
Recursive call: If j < k + 1, the scheduling is applied recursively on

�m−1
k � new sessions;

(This is done using the next �m−1
k � remaining sessions out of 2, . . . ,m.)

As before, at the end of each session Vh continues in the interaction if and
only if the transcript of the session that has just terminated would have been
accepted by the prescribed verifier V . The schedule is depicted in Fig. 7.3.

The crucial problem of the above schedule is that one can come up with a
k-round protocol and a corresponding simulator that manages to succesfully
simulate Vh and cause all session prefixes in its conversation with Vh to be
non-useful. Specifically, there exist protocols (cf. [94]) in which the simulator
is required to successfully rewind an honestly behaving verifier exactly once
for every session. Whereas in the case of two-rounds this could have had
devastating consequences (since, in the case of the previous schedule, it would
have implied W (m) ≥ (k + 1) · W (m − 1) = 2 · W (m − 1), which solves to
W (n) ≥ 2n−1), in the general case (i.e., when k +1 > 2) any rewinding of the
schedule that we have suggested would have forced the simulator to re-invest
simulation “work” only for m−1

k sessions. Note that such a simulator satisfies
W (m) = (k+1) ·W (m−1

k ), which solves to kO(logk n) = nO(1). In particular, by
investing polynomial amount of work the simulator is able to make all session
prefixes not useful while succesfully simulating all sessions.

The k-round Case – Second Attempt. One method to circumvent this
difficulty was used in [97]. However, that method extends the lower bound
only up to three rounds (more precisely, seven messages). Here we use a dif-
ferent method. What we do is let the cheating verifier abort (i.e., refuse to
answer) every message in the schedule with some predetermined probability
(independently of other messages). To do this, we first add another, binary
hash function, g, to the specification of Vh. This hash function is taken from
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1 2 m
v1
p1

⇐⇒

Rm−1
k

v2
p2

⇐⇒

. .

. .

. .

vj−1
p

j−1

⇐⇒

Rm−1
k

vj
pj

⇐⇒

. .

. .

. .

vk
p

k

⇐⇒

Rm−1
k

vk+1
p

k+1

⇐⇒

Fig. 7.3. First attempt to generalize the recursive schedule for k-round protocols.

a family G with sufficient independence, so that it looks like a random binary
function. Now, before generating the next message in some session, Vg,h first
applies g to some predetermined part of the conversation so far. If g returns 0
then Vg,h aborts the session by sending an ABORT message. If g returns 1 then
Vg,h is run as usual.

The rationale behind the use of aborts can be explained as follows. Recall
that a session prefix a stops being useful only when Vg,h sends more than k
messages whose session prefix is a. This means that a stops being useful only
if S rewinds the session prefix a and in addition g returns 1 in at least two
of the continuations of a. This means that S is expected to rewind session
prefix a several times before it stops being useful. Since each rewinding of a
involves extra work of S on higher-level sessions, this may force S to invest
considerably more work before a session stops being useful.

A bit more specifically, let p denote the probability, taken over the choice
of g, that g returns 1 on a given input. In each attempt, the session is not
aborted with probability p. Thus S is expected to rewind a session prefix 1/p
times before it becomes non-useful. This gives hope that, in order to make
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sure that no session prefix is useful, S must do work that satisfies a condition
of the sort:

W (m) ≥ Ω(1/p) · W
(

m−1
k

)
. (7.1)

This would mean that the work required to successfully simulate n sessions
and make all session prefixes non-useful is at least Ω(p− logk n). Consequently,
when the expression p− logk n is super-polynomial there is hope that the con-
versation between S and Vh contains a useful session prefix with non-negligible
probability.

The k-round Case – Final Version. However, demonstrating 7.1 brings up
the following difficulty. Once the verifier starts aborting sessions, the probabil-
ity that a session is ever completed may become too small. As a consequence,
it is not clear anymore that the simulator must invest simulation “work” for
all sessions in the schedule. It may very well be the case that the simulator will
go about the simulation task while “avoiding” part of the simulation “work”
in some recursive invocations (as some of these invocations may be aborted
anyway during the simulation). In other words, there is no guarantee that the
recursive “work” invested by the simulator behaves like 7.1.

To overcome this problem, we replace each session in the above schedule
(for k rounds) with a “block” of, say, n sessions (see Fig. 7.4 in page 121). We
now have n2 sessions in a schedule. (This choice of parameters is arbitrary, and
is made for convenience of presentation.) Vg,h accepts a block of n sessions if at
least 1/2 of the non-aborted sessions in this block were accepted and not too
many of the sessions in this block were aborted. Once a block is rejected, Vg,h

halts. At the end of the execution, Vg,h accepts if all blocks were accepted. The
above modification guarantees that, with a careful setting of the parameters,
the simulator’s recursive “work” must satisfy 7.1, at least with overwhelming
probability.

Setting the Value of p. It now remains to set the value of p so that 7.1
is established. Clearly, the smaller p is chosen to be, the larger p− logk n is.
However, p cannot be too small, or else the probability of a session to be
ever completed will be too small, and Condition (1) in the definition of a
useful session prefix (see page 112) will not be satisfied. Specifically, a k-
round protocol is completed with probability pk. We thus have to make sure
that pk is not negligible (and furthermore that pk · n � 1).

In the proof we set p = n−1/2k. This will guarantee that a session
is completed with probability pk = n−1/2 (thus Condition (1) has hope
to be satisfied). Furthermore, since p− logk n is super-polynomial whenever
k = o(log n/ log log n), there is hope that Condition (2) in the definition of a
useful session prefix (see page 112) will be satisfied for k = o(log n/ log log n).
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7.1.3 The Actual Analysis

Demonstrating that there exist many accepted session prefixes is straight-
forward. Demonstrating that one of these session prefixes is useful requires
arguing on the dependency between the expected work done by the simulator
and its success probability. This is a tricky business, since the choices made
by the simulator (and in particular the amount of effort spent on making each
session non-useful) may depend on past events.

We go about this task by pinpointing a special (combinatorial) property
that holds for any successful run of the simulator, unless the simulator runs in
super-polynomial time (Lemma 7.3.9). Essentially, this property states that
there exists a block of sessions such that none of the session prefixes in this
block were rewound too many times. Using this property, we show (in Lemma
7.3.7) that the probability (over the choices of Vg,h and the simulator) that a
run of the simulator contains no useful session prefix is negligible.

7.2 The Actual Proof

Assuming towards the contradiction that a black-box simulator, denoted S,
contradicting Theorem 7.1 exists, we will describe a probabilistic polynomial-
time decision procedure for L, based on S. The first step towards describing
the decision procedure for L involves the construction of an adversary verifier
in the concurrent model. This is done next.

7.2.1 The Concurrent Adversarial Verifier

The description of the adversarial strategy proceeds in several steps. We start
by describing the underlying fixed schedule of messages. Once the schedule is
presented, we describe the adversary’s strategy regarding the contents of the
verifier messages.

The Schedule

For each x ∈ {0, 1}n, we consider the following concurrent scheduling of n2

sessions, all run on common input x.3 The scheduling is defined recursively,
where the scheduling of m ≤ n2 sessions (denoted Rm) proceeds as follows:4

1. If m ≤ n, sessions 1, . . . ,m are executed sequentially until they are all
completed;

3Recall that each session consists of 2k + 2 messages, where k
def
= k(n) =

o(log n/ log log n).
4In general, we may want to define a recursive scheduling for sessions i1, . . . , im

and denote it by Ri1,...,im . We choose to simplify the exposition by renaming these
sessions as 1, . . . , m and denote the scheduling by Rm.
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2. Otherwise, for j = 1, . . . , k + 1:
Message exchange: Each of the first n sessions exchanges two messages

(i.e., vj , pj);
(These first n sessions out of {1, . . . ,m} will be referred to as the main
sessions of Rm.)

Recursive call: If j < k + 1, the scheduling is applied recursively on
�m−n

k � new sessions;
(This is done using the next �m−n

k � remaining sessions out of 1, . . . ,m.)

The schedule is depicted in Fig. 7.4. We stress that the verifier typically post-
pones its answer (i.e., vj) to the last prover’s message (i.e., pj−1) till after
a recursive subschedule is executed, and that in the jth iteration of Step 2,
�m−n

k � new sessions are initiated (with the exception of the first iteration, in
which the first n (main) sessions are initiated as well). The order in which the
messages of various sessions are exchanged (in the first part of Step 2) is fixed
but immaterial. Say that we let the first session proceed, then the second and
so on. That is, we have the order v

(1)
j , p

(1)
j , . . . , v

(n)
j , p

(n)
j , where v

(i)
j (resp.,

p
(i)
j ) denotes the verifier’s (resp., prover’s) jth message in the ith session.

The set of n sessions that are explicitly executed during the message ex-
change phase of the recursive invocation (i.e., the main sessions) is called a
recursive block. (Notice that each recursive block corresponds to exactly one
recursive invocation of the schedule.) Taking a closer look at the schedule we
observe that every session in the schedule is explicitly executed in exactly one
recursive invocation (that is, belongs to exactly one recursive block). Since the
total number of sessions in the schedule is n2, and since the message exchange
phase in each recursive invocation involves the explicit execution of n sessions
(in other words, the size of each recursive block is n), we have that the total
number of recursive blocks in the schedule equals n. Since each recursive in-
vocation of the schedule involves the invocation of k additional subschedules,
the recursion actually corresponds to a k-ary tree with n nodes. The depth of
the recursion is thus �logk((k − 1)n + 1)�, and the number of “leaves” in the
recursion (i.e., subschedules of size at most n) is at least � (k−1)n+1

k �.

Identifying Sessions According to their Recursive Block. To simplify
the exposition of the proof, it will be convenient to associate every session
appearing in the schedule with a pair of indices (
, i) ∈ {1, . . . , n}×{1, . . . , n},
rather than with a single index s ∈ {1, . . . , n2}. The value of 
 = 
(s) ∈
{1, . . . , n} will represent the index of the recursive block to which session s
belongs (according to some canonical enumeration of the n invocations in the
recursive schedule, say according to the order in which they are invoked),
whereas the value of i = i(s) ∈ {1, . . . , n} will represent the index of session s
within the n sessions that belong to the 
th recursive block (in other words,
session (
, i) is the ith main session of the 
th recursive invocation in the
schedule). Typically, when we explicitly refer to messages of session (
, i), the
index of the corresponding recursive block (i.e., 
) is easily deducible from the
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context. In such cases, we will sometimes omit the index 
 from the “natural”
notation v

(�,i)
j (resp. p(�,i)

j ), and stick to the notation v
(i)
j (resp. p(i)

j ). Note
that the values of (
, i) and the session index s are completely interchangeable
(in particular, 
 = s div n and i = s mod n).

1 2 n n + 1 m
v1
p1

⇐⇒
⇐⇒ . . . ⇐⇒

R m−n
k

v2
p2

⇐⇒
⇐⇒ . . . ⇐⇒

. .

. .

. .

vj−1
pj−1

⇐⇒
⇐⇒ . . . ⇐⇒

R m−n
k

vj
pj

⇐⇒
⇐⇒ . . . ⇐⇒

. .

. .

. .

vk
pk

⇐⇒
⇐⇒ . . . ⇐⇒

R m−n
k

vk+1
pk+1

⇐⇒
⇐⇒ . . . ⇐⇒

Fig. 7.4. The recursive schedule Rm for m sessions. Columns correspond to m
individual sessions and rows correspond to the time progression.

Definition 7.2.1 (Identifiers of next message) The schedule defines a map-
ping from partial execution transcripts ending with a prover message to the
identifiers of the next verifier message; that is, the session and round number
to which the next verifier message belongs. (Recall that such partial execution
transcripts correspond to queries of a black-box simulator and so the mapping
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defines the identifier of the answer.) For such a query q = (b1, a1, . . . , bt, at),
we denote by πsn(q) = (
, i) ∈ {1, . . . , n}× {1, . . . , n} the session to which the
next verifier message belongs, and by πmsg(q) = j ∈ {1, . . . , k + 1} its index
within the verifier’s messages in this session.

We stress that the identifiers of the next message are uniquely determined by
the number of messages appearing in the query (and are not affected by the
contents of these messages).

Towards Constructing an Adversarial Verifier

Once the identifiers of the next verifier message are deduced from the query’s
length, one has to specify a strategy according to which the contents of the
next verifier message will be determined. Loosely speaking, our adversary
verifier has two options. It will either send the answer that would have been
sent by an honest verifier (given the messages in the query that are relevant
to the current session), or it will choose to deviate from the honest verifier
strategy and abort the interaction in the current session (this will be done by
answering with a special ABORT message). Since in a non-trivial zero-knowledge
proof system the honest verifier is always probabilistic (cf. [67]), and since the
“abort behavior” of the adversary verifier should be “unpredictable” for the
simulator, we have that both options require a source of randomness (either for
computing the contents of the honest verifier answer or for deciding whether
to abort the conversation). As is already customary in works of this sort [63,
83, 97], we let the source of randomness be a hash function with sufficiently
high independence (which is “hard-wired” into the verifier’s description), and
consider the execution of a black-box simulator that is given access to such
a random verifier. (Recall that the simulator’s queries correspond to partial
execution transcripts and thus contain the whole history of the interaction so
far.)

Determining the Randomness for a Session. Focusing (first) on the
randomness required to compute the honest verifier’s answers, we ask what
should the input of the above hash function be. A naive solution would be to let
the randomness for a session depend on the session’s index. That is, to obtain
randomness for session (
, i) = πsn(q) apply the hash function on the value
(
, i). This solution will indeed imply that every two sessions have independent
randomness (as the hash function will have different inputs). However, the
solution seems to fail to capture the difficulty arising in the simulation (of
multiple concurrent sessions). What we would like to have is a situation in
which whenever the simulator rewinds a session (that is, feeds the adversary
verifier with a different query of the same length), it causes the randomness
of some other session (say, one level down in the recursive schedule) to be
completely modified. To achieve this, we must cause the randomness of a
session to depend also on the history of the entire interaction. Changing even
a single message in this history would immediately result in an unrelated
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instance of the current session, and would thus force the simulator to redo the
simulation work on this session all over again.

So where in the schedule should the randomness of session (
, i) be de-
termined? On the one hand, we would like to determine the randomness of a
session as late as possible (in order to maximize the effect of changes in the his-
tory of the interaction on the randomness of the session). On the other hand,
we cannot afford to determine the randomness after the session’s initiating
message is scheduled (since the protocol’s specification may require that the
verifier’s randomness is completely determined before the first verifier mes-
sage is sent). For technical reasons, the point in which we choose to determine
the randomness of session (
, i) is the point in which recursive block number

 is invoked. That is, to obtain the randomness of session (
, i) = πsn(q) we
feed the hash function with the prefix of query q that ends just before the
first message in block number 
 (this prefix is called the block prefix of query q
and is defined below). In order to achieve independence with other sessions in
block number 
, we will also feed the hash function with the value of i. This
(together with the above choice) guarantees us the following properties. (1)
The input to the hash function (and thus the randomness for session (
, i))
does not change once the interaction in the session begins (that is, once the
first verifier message is sent). (2) For every pair of different sessions, the input
to the hash function is different (and thus the randomness for each session is
independent). (3) Even a single modification in the prefix of the interaction
up to the first message in block number 
, induces fresh randomness for all
sessions in block number 
.

Definition 7.2.2 (Block prefix) The block prefix of a query q satisfying
πsn(q) = (
, i), is the prefix of q that is answered with the first verifier message
of session (
, 1) (that is, the first main session in block number 
). More for-
mally, bp(q) = (b1, a1, . . . , bγ , aγ) is the block prefix of q = (b1, a1, . . . , bt, at)
if πsn(bp(q)) = (
, 1) and πmsg(bp(q)) = 1. The block prefix will be said to
correspond to recursive block number 
.5 (Note that i may be any index in
{1, . . . , n}, and that at need not belong to session (
, i).)

Determining Whether and When to Abort Sessions. Whereas the
randomness that is used to compute the honest verifier’s answers in each
session is determined before a session begins, the randomness that is used in
order to decide whether to abort a session is chosen independently every time
the execution of the schedule reaches the next verifier message in this session.
As before, the required randomness is obtained by applying a hash function
on the suitable prefix of the execution transcript. This time, however, the
length of the prefix increases each time the execution of the session reaches
the next verifier message (rather than being fixed for the whole execution of
the session). This way, the decision of whether to abort a session also depends

5In the special case that 
 = 1 (that is, we are in the first block of the schedule),
we define bp(q) =⊥.
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on the contents of messages that were exchanged after the initiation of the
session has occurred. Specifically, in order to decide whether to abort session
(
, i) = πsn(q) at the jth message (where j = πmsg(q)), we feed the hash
function with the prefix (of query q) that ends with the (j−1)st prover message
in the nth main session of block number 
. (As before, the hash function is also
fed with the value of i in order to achieve independence from other sessions
in the block.) This prefix is called the iteration prefix of query q and is defined
next (see Fig. 7.5 for a graphical description of the block prefix and iteration
prefix of a query).

Definition 7.2.3 (Iteration prefix) The iteration prefix of a query q satisfying
πsn(q) = (
, i) and πmsg(q) = j > 1, is the prefix of q that ends with the
(j−1)st prover message in session (
, n) (that is, the nth main session in block
number 
). More formally, ip(q) = (b1, a1, . . . , bδ, aδ) is the iteration prefix
of q = (b1, a1, . . . , bt, at) if aδ is of the form p

(n)
j−1 (where p

(n)
j−1 denotes the

(j−1)st prover message in the nth main session of block number 
). This
iteration prefix is said to correspond to the block prefix of q. (Again, note that
i may be any index in {1, . . . , n}, and that at need not belong to session (
, i).
Also, note that the iteration prefix is defined only for πmsg(q) > 1.)

We stress that two queries q1, q2 may have the same iteration prefix even
if they do not correspond to the same session. This could happen whenever
bp(q1) = bp(q2) and πmsg(q1) = πmsg(q2) (which is possible even if πsn(q1) �=
πsn(q2)).

Motivating Definitions 7.2.2 and 7.2.3. The choices made in Defini-
tions 7.2.2 and 7.2.3 are designed to capture the difficulties encountered when-
ever many sessions are to be simulated concurrently. As was previously men-
tioned, we would like to create a situation in which every attempt of the
simulator to rewind a specific session will result in loss of work done for other
sessions (and so will cause the simulator to do the same amount of work all
over again). In order to force the simulator to repeat each such rewinding
attempt many times, we make each rewinding attempt fail with some prede-
termined probability (by letting the verifier send an ABORT message instead of
a legal answer).6

To see that Definitions 7.2.2 and 7.2.3 indeed lead to the fulfillment of
the above requirements, we consider the following example. Suppose that at
some point during the simulation, the adversary verifier aborts session (
, i)
at the jth message (while answering query q). Further suppose that (for some
unspecified reason) the simulator wants to get a “second chance” in receiving
a legal answer to the jth message in session (
, i) (hoping that it will not re-
ceive the ABORT message again). Recall that the decision of whether to abort
a session depends on the outcome of a hash function when applied to the

6Recall that all of the above is required in order to make the simulator’s work ac-
cumulate to too much, and eventually cause its running time to be super-polynomial.
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Fig. 7.5. Determining the prefixes of query q (in this example, query q ends with

a p
(1)
j message and is to be answered by v

(2)
j , represented by the marked arrow):

(a) indicates the block prefix of q (i.e., messages up to this point are used by Vg,h

to determine the randomness to be used for computing message v
(2)
j ). (b) indicates

the iteration prefix of q (i.e., messages up to this point are used by Vg,h to determine

whether or not message v
(2)
j will be set to ABORT).

iteration prefix ip(q), of query q. In particular, to obtain a “second chance”,
the black-box simulator has no choice but to change at least one prover mes-
sage in the above iteration prefix (in other words, the simulator must rewind
the interaction to some message occurring in iteration prefix ip(q)). At first
glance it may seem that the effect of changes in the iteration prefix of query q
is confined to the messages that belong to session (
, i) = πsn(q) (or at most,
to messages that belong to other sessions in block number 
). However, taking
a closer look at the schedule, we observe that every iteration prefix (and in
particular ip(q)) can also be viewed as the block prefix of a recursive block
one level down in the recursive construction. Viewed this way, it is clear that
the effect of changes in ip(q) is not confined only to messages that correspond
to recursive block number 
, but rather extends also to sessions at lower levels
in the recursive schedule. By changing even a single message in iteration pre-
fix ip(q), the simulator is actually modifying the block prefix of all recursive
blocks in a subschedule one level down in the recursive construction. This
means that the randomness for all sessions in these blocks is completely mod-
ified (recall that the randomness of a session is determined by applying a hash
function on the corresponding block prefix), and that all the simulation work
done for these sessions is lost. In particular, by changing even a single message
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in iteration prefix ip(q), the simulator will find himself doing the simulation
work for these lower-level sessions all over again.

Having established the effect of changes in iteration prefix ip(q) on sessions
at lower levels in the recursive schedule, we now turn to examine the actual
effect on session (
, i) = πsn(q) itself. One possible consequence of changes in
iteration prefix ip(q) is that they may also affect the contents of the block
prefix bp(q) of query q (notice that, by definition, the block prefix bp(q) of
query q is contained in the iteration prefix ip(q) of query q). Whenever this
happens, the randomness used for session (
, i) is completely modified, and
all simulation work done for this session will be lost. A more interesting con-
sequence of a change in the contents of iteration prefix ip(q), is that it will
result in a completely independent decision of whether session (
, i) is to be
aborted at the jth message (the decision of whether to abort is taken whenever
the simulator makes a query q satisfying πsn(q) = (
, i), and πmsg(q) = j). In
other words, each time the simulator attempts to get a “second chance” in
receiving a legal answer to the jth message in session (
, i) (by rewinding the
interaction to a message that belongs to iteration prefix ip(q)), it faces the
risk of being answered with an ABORT message independently of all previous
rewinding attempts.

7.2.2 The Actual Verifier Strategy Vg,h

We consider what happens when a simulator S (for the above schedule) is given
oracle access to a verifier strategy Vg,h defined as follows (depending on hash
functions g, h and the input x). Recall that we may assume that S runs in strict
polynomial time: we denote such time bound by tS(·). Let G denote a small
family of tS(n)-wise independent hash functions mapping poly(n)-bit long
sequences into a single bit of output, so that for every α we have Prg←G[g(α) =
1] = n−1/2k. Let H denote a small family of tS(n)-wise independent hash
functions mapping poly(n)-bit long sequences to ρV (n)-bit sequences, so that
for every α we have Prh←H [h(α) = 1] = 2−ρV (n) (where ρV (n) is the number
of random bits used by an honest verifier V on an input x ∈ {0, 1}n).7 We
describe a family {Vg,h}g∈G,h∈H of adversarial verifier strategies (where x is
implicit in Vg,h). On query q = (b1, a1, . . . , at−1, bt, at), the verifier acts as
follows:

1. First, Vg,h checks if the execution transcript given by the query is legal
(i.e., corresponds to a possible execution prefix), and halts with a special
ERROR message if the query is not legal.8

7We stress that functions in such families can be described by strings of polyno-
mial length in a way that enables polynomial time evaluation (cf. [79, 32, 33, 2]).

8In particular, Vg,h checks whether the query is of the prescribed format (as
described in Sect. 3.7, and as determined by the schedule), and that the contents of
its messages is consistent with Vg,h’s prior answers. (That is, for every proper prefix
q′ = (b1, a1, . . . , bu, au) of query q = (b1, a1, . . . , bt, at), the verifier checks whether
the value of bu+1 (as it appears in q) is indeed equal to the value of Vg,h(q′).)
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2. Next, Vg,h determines the block prefix, bp(q) = (b1, a1, . . . , bγ , aγ), of query
q. It also determines the identifiers of the next-message (
, i) = πsn(q) and
j = πmsg(q), the iteration prefix ip(q) = (b1, a1, . . . , bδ, p

(n)
j−1), and the j−1

prover messages of session i appearing in query q (which we denote by
p
(i)
1 , . . . , p

(i)
j−1).

(Motivating Discussion. The next message is the jth verifier message in the

ith session of block 
. The value of the block prefix, bp(q), is used in order to

determine the randomness of session (
, i), whereas the value of the iteration

prefix, ip(q), is used in order to determine whether session (
, i) is about to be

aborted at this point (i.e., jth message) in the schedule, by answering with a

special ABORT message.)

3. If j = 1, then Vg,h answers with the verifier’s fixed initiation message for
session i (i.e., v(i)

1 ).
4. If j > 1, then Vg,h determines bi,j = g(i, ip(q)) (i.e., a bit deciding whether

to abort session i):

a) If bi,j = 0, then Vg,h sets v
(i)
j = ABORT (indicating that Vg,h aborts

session i).
b) If bi,j = 1, then Vg,h determines ri = h(i, bp(q)) (as coins to be

used by V ), and computes the message v
(i)
j = V (x, ri; p

(i)
1 , . . . , p

(i)
j−1)

that would have been sent by the honest verifier on common input x,
random-pad ri, and prover’s messages p(i)

1 , . . . , p
(i)
j−1.

c) Finally, Vg,h answers with v
(i)
j .

Dealing with ABORT Messages. Note that, once Vg,h has aborted a ses-
sion, the interaction in this session essentially stops, and there is no need to
continue exchanging messages in this session. However, for simplicity of ex-
position we assume that the verifier and prover stick to the fixed schedule
of Sect. 7.2.1 and exchange ABORT messages whenever an aborted session is
scheduled. Specifically, if the jth verifier message in session i is ABORT then all
subsequent prover and verifier messages in that session will also equal ABORT.

On the Arguments to g and h. The hash function h, which determines
the random input for V in a session, is applied both on i (the identifier of the
relevant session within the current block) and on the entire block prefix of the
query q. This means that even though all sessions in a specific block have the
same block prefix, for every pair of two different sessions, the corresponding
random inputs of V will be independent of each other (as long as the number
of applications of h does not exceed tS(n), which is indeed the case in our
application). The hash function g, which determines whether and when the
verifier aborts sessions, is applied both on i and on the entire iteration prefix
of the query q. As in the case of h, the decision whether to abort a session
is independent from the same decision for other sessions (again, as long as g
is not applied more than tS(n) times). However, there is a significant differ-
ence between the inputs of h and g: Whereas the input of h is fixed once i
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and the block prefix are fixed (and is unaffected by messages that belong to
that session), the input of g varies depending on previous messages sent in
that session. In particular, whereas the randomness of a session is completely
determined once the session begins, the decision of whether to abort a session
is taken independently each time that the schedule reaches the next verifier
message of this session.

On the Number of Different Prefixes that Occur in Interactions
with Vg,h. Since the number of recursive blocks in the schedule is equal to
n, and since there is a one-to-one correspondence between recursive blocks
and block prefixes, we have that the number of different block prefixes that
occur during an interaction between an honest prover P and the verifier Vg,h

is always equal to n. Since the number of iterations in the message exchange
phase of a recursive invocation of the schedule equals k +1, and since there is
a one-to-one correspondence between such iterations and iteration prefixes9

we have that the number of different iteration prefixes that occur during
an interaction between and honest prover P and the verifier Vg,h, is always
equal to k · n (that is, k different iteration prefixes for each one of the n
recursive invocations of the schedule). In contrast, the number of different
block prefixes (resp., iteration prefixes), that occur during an execution of a
black-box simulator S that is given oracle access to Vg,h, may be considerably
larger than n (resp., k · n). The reason for this is that there is nothing that
prevents the simulator from feeding Vg,h with different queries of the same
length (this corresponds to the so called rewinding of an interaction). Still,
the number of different prefixes in an execution of S is always upper bounded
by the running time of S; that is, tS(n).

On the Probability That a Session Is Never Aborted. A typical inter-
action between an honest prover P and the verifier Vg,h will contain sessions
whose execution has been aborted prior to completion. Recall that at each
point in the schedule, the decision of whether or not to abort the next sched-
uled session depends on the outcome of g. Since the function g returns 1
with probability n−1/2k, a specific session is never aborted with probability
(n−1/2k)k = n−1/2. Using the fact that whenever a session is not aborted, Vg,h

operates as the honest verifier, we infer that the probability that a specific
session is eventually accepted by Vg,h is at least 1/2 times the probability
that the very same session is never aborted (where 1/2 is an arbitrary lower
bound on the completeness probability of the protocol). In other words, the
probability that a session is accepted by Vg,h is at least n−1/2

2 . In particular,
for every set of n sessions, the expected number of sessions that are eventu-
ally accepted by Vg,h (when interacting with the honest prover P ) is at least

9The only exception is the first iteration in the message exchange phase. Since
only queries q that satisfy πmsg(q)>1 have an iteration prefix, the first iteration will
never have a corresponding iteration prefix.
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n · n−1/2

2 = n1/2

2 , and with overwhelming high probability at least n1/2

4 sessions
are accepted by Vg,h.

A Slight Modification of the Verifier Strategy. To facilitate the anal-
ysis, we slightly modify the verifier strategy Vg,h so that it does not allow
the number of accepted sessions in the history of the interaction to deviate
much from its “expected behavior”. Loosely speaking, given a prefix of the
execution transcript (ending with a prover message), the verifier will check
whether the recursive block that has just been completed contains at least
n1/2

4 accepted sessions. (To this end, it will be sufficient to inspect the history
of the interaction only when the execution of the schedule reaches the end
of a recursive block. That is, whenever the schedule reaches the last prover
message in the last session of a recursive block, i.e., some p

(n)
k+1 message.) The

modified verifier strategy (which we continue to denote by Vg,h), is obtained
by adding to the original strategy an additional Step 1′ (to be executed after
Step 1 of Vg,h):
1′. If at is of the form p

(n)
k+1 (i.e., in case query q = (b1, a1, . . . , bt, at) ends

with the last prover message of the nth main session of a recursive block),
Vg,h checks whether the transcript q = (b1, a1, . . . , bt, p

(n)
k+1) contains the

accepting conversations of at least n1/2

4 main sessions in the block that
has just been completed. In case it does not, Vg,h halts with a special
DEVIATION message (indicating that the number of accepted sessions in
the block that has just been completed deviates from its expected value).

Motivating Discussion. Since the expected number of accepted sessions in
a specific block is at least n1/2

2 , the probability that the block contains less
than n1/2

4 accepted sessions is negligible (see the proof of Lemma 7.2.4). Still,
the above modification is not superfluous (even though it refers to events that
occur only with negligible probability): it allows us to assume that every re-
cursive block that is completed during the simulation (including those that do
not appear in the simulator’s output) contains at least n1/2

4 accepted sessions.
In particular, whenever the simulator feeds Vg,h with a partial execution tran-
script (i.e., a query), we are guaranteed that for every completed block in this
transcript, the simulator has indeed “invested work” to simulate the at least
n1/2

4 accepted sessions in the block.

A Slight Modification of the Simulator. Before presenting the decision
procedure, we slightly modify the simulator so that it never makes a query
that is answered with either the ERROR or DEVIATION messages by the verifier
Vg,h. Note that the corresponding condition can be easily checked by the
simulator (which can easily produce this special message by itself),10 and
that the modification does not affect the simulator’s output. From this point

10We stress that, as opposed to the ERROR and DEVIATION messages, the simulator
cannot predict whether its query is about to be answered with the ABORT message.



130 7 Black-Box cZK Requires Logarithmically Many Rounds

on, when we talk of the simulator (which we continue to denote by S) we
mean the modified one.

7.2.3 The Decision Procedure for L

We are now ready to describe a probabilistic polynomial-time decision pro-
cedure for L, based on the black-box simulator S and the verifier strategies
Vg,h. On input x∈{0, 1}n, the procedure operates as follows:

1. Uniformly select hash functions g
r←G and h

r←H.
2. Invoke S on input x providing it black-box access to Vg,h (as defined

above). That is, the procedure emulates the execution of the oracle ma-
chine S on input x along with emulating the answers of Vg,h, where g and
h are as determined in Step 1.

3. Accept if and only if S outputs a legal transcript (as determined by Steps 1
and 1′ of Vg,h).11

By our hypothesis, the above procedure runs in probabilistic polynomial-time.
We next analyze its performance.

Lemma 7.2.4 (Performance on yes-instances) For all but finitely many x ∈
L, the above procedure accepts x with probability at least 2/3.

Proof Sketch Let x ∈ L, g
r←G, h

r←H, and consider the honest prover P .
We show below that, except for negligible probability (where the probability
is taken over the random choices of g, h, and P ’s coin tosses), when Vg,h

interacts with P , all recursive blocks in the resulting transcript contain the
accepting conversations of at least n1/2

4 main sessions. Since for every g and h
the simulator SVg,h(x) must generate a transcript whose deviation gap from
〈P, Vg,h〉(x) is at most 1/4, it follows that SVg,h(x) has deviation gap at most
1/4 from 〈P, Vg,h〉(x) also when g

r←G and h
r←H. Consequently, when S is run

by the decision procedure for L, the transcript SVg,h(x) will not be legal with
probability at most 1/3. Details follow.

Let τ denote the random variable describing the transcript of the interac-
tion between the honest prover P and Vg,h, where the probability is taken over
the choices of g, h, and P . Let s ∈ {1, . . . , n2}. We first calculate the proba-
bility that the sth session in τ is completed and accepted (i.e., Vg,h sends the

11Recall that we are assuming that the simulator never makes a query that is ruled
out by Steps 1 and 1′ of Vg,h. Since before producing output (b1, a1, . . . , bT , aT ) the
simulator makes the query (b1, a1, . . . , bT , aT ), checking the legality of the transcript
in Step 3 is not really necessary (as, in case that the modified simulator indeed
reaches the output stage “safely”, we are guaranteed that it will produce a legal
output). In particular, we are always guaranteed that the simulator either produces
execution transcripts in which every recursive block contains at least n1/2/4 sessions
that were accepted by Vg,h, or it does not produce any output at all.
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message v
(s)
k+1 = ACCEPT), conditioned on the event that Vg,h did not abandon

the interaction beforehand (i.e., Vg,h did not send the DEVIATION message be-
fore).12 For uniformly selected g

r←G, the probability that Vg,h does not abort
the session in each of the k rounds, given that it has not already aborted, is
n−1/2k. Thus, conditioned on the event that Vg,h did not output DEVIATION
beforehand, the session is completed (without being aborted) with probability
(n−1/2k)k = n−1/2.

The key observation is that if h is uniformly chosen from H then, condi-
tioned on the event that Vg,h did not output DEVIATION beforehand and the
current session is not aborted, the conversation between Vg,h and P is dis-
tributed identically to the conversation between the honest verifier V and P
on input x. By the completeness requirement for zero-knowledge protocols, we
have that V accepts in such an interaction with probability at least 1/2 (this
probability is actually higher, but 1/2 is more than enough for our purposes).
Consequently, for uniformly selected g and h, conditioned on the event that
Vg,h did not output DEVIATION beforehand, the probability that a session is
accepted by Vg,h is at least n−1/2

2 .
We calculate the probability that τ contains a block such that less than

n1/2

4 of its sessions are accepted. Say that a block B in a transcript has been
completed if all the messages of sessions in B have been sent during the
interaction. Say that B is admissible if the number of accepted sessions that
belong to block B in the transcript is at least n1/2

4 . Enumerating blocks in the
order in which they are completed (that is, when we refer to the 
th block in
τ , we mean the 
th block that is completed in τ), we denote by γ� the event
that all the blocks up to and including the 
th block are admissible in τ .

For i ∈ {1, . . . , n} define a Boolean indicator α�
i to be 1 if and only if the

ith session in the 
th block is accepted by Vg,h. We have seen that, conditioned
on the event γ�−1, each α�

i is 1 w.p. at least n−1/2

2 . As a consequence, for every

, the expectation of

∑n
i=1 α�

i (i.e., the number of accepted main sessions in
block number 
) is at least n1/2

2 . Since, conditioned on γ�−1, the α�
i ’s are

independent of each other, we can apply the Chernoff bound, and infer that

Pr [γ�|γ�−1] > 1 − e−Ω(n1/2).

Furthermore, since no session belongs to more than one block, we have:

Pr [γ�] ≥ Pr [γl|γ�−1] · Pr [γl−1] .

It follows (by induction on the number of completed blocks in a transcript),
that all blocks in τ are admissible with probability at least (1− e−Ω(n1/2))n >

1 − n · e−Ω(n1/2). The lemma follows.
12Note that, since we are dealing with the honest prover P , there is no need to

consider the ERROR message at all (since in an interaction with the honest prover P ,
the adversary verifier Vg,h will never output ERROR anyway).
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Lemma 7.2.5 (Performance on no-instances) For all but finitely many x �∈
L, the above procedure rejects x with probability at least 2/3.

We can actually prove that for every positive polynomial p(·) and for all
but finitely many x �∈ L, the above procedure accepts x with probability at
most 1/p(|x|). Assuming towards contradiction that this is not the case, we
will construct a (probabilistic polynomial-time) strategy for a cheating prover
that fools the honest verifier V with success probability at least 1/poly(n)
in contradiction to the soundness (and even computational-soundness) of the
proof system.

7.3 Performance on no-instances

We now turn to prove Lemma 7.2.5. Let us fix an x ∈ {0, 1}n \ L as above.13

Denote by AC = ACx the set of triplets (σ, g, h) so that on input x, internal
coins σ and oracle access to Vg,h, the simulator outputs a legal transcript
(which we denote by S

Vg,h
σ (x)). Recall that our contradiction assumption is

that Prσ,g,h[(σ, g, h) ∈ AC] > 1/p(n), for some fixed positive polynomial p(·).
Before proceeding with the proof of Lemma 7.2.5, we formalize what we mean
by referring to the “execution of the simulator”.

Definition 7.3.1 (Execution of simulator) Let x, σ ∈ {0, 1}∗, g ∈ G and
h ∈ H. The execution of simulator S, denoted execx(σ, g, h), is the sequence
of queries made by S, given input x, random coins σ, and oracle access to
Vg,h(x).

Since the simulator has the ability to “rewind” the verifier Vg,h and explore
Vg,h’s output on various execution prefixes (i.e., queries) of the same length,
the number of distinct block prefixes that appear in execx(σ, g, h) may be
strictly larger than n (recall that the schedule consists of n invocations to
recursive blocks, and that in an interaction between the honest prover P
and Vg,h there is a one-to-one correspondence between recursive blocks and
block prefixes). As a consequence, the 
th distinct block prefix appearing in
execx(σ, g, h) does not necessarily correspond to the 
th recursive block in the
schedule. Nevertheless, given execx(σ, g, h) and 
, one can easily determine
for the 
th distinct block prefix in the execution of the simulator the index
of its corresponding block in the schedule (say, by extracting the 
th distinct
block prefix in execx(σ, g, h), and then analyzing its length).

In the sequel, given a specific block prefix bp, we let 
(bp) ∈ {1, . . . , n} de-
note the index of its corresponding block in the schedule (as determined by bp’s
length). Note that two different block prefixes bp1 and bp2 in execx(σ, g, h)
may satisfy 
(bp1) = 
(bp2) (as they may correspond to two different instances
of the same recursive block). In particular, session (
(bp1), i) may have more

13Actually, we need to consider infinitely many such x’s.
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than a single occurrence during the execution of the simulator (whereas in
an interaction of the honest prover P with Vg,h each session index will occur
exactly once). This means that whenever we refer to an instance of session
(
, i) in the simulation, we will also have to explicitly specify to which block
prefix this instance corresponds.

In order to avoid cumbersome statements, we will abuse the notation 
(bp)

and also use it in order to specify to which instance the recursive block 
(bp)

corresponds. That is, whenever we refer to recursive block number 
(bp) we
will actually mean: “the specific instance of recursive block number 
 (= 
(bp))
that corresponds to block prefix bp in execx(σ, g, h)”. Viewed this way, for

(bp1) = 
(bp2), sessions (
(bp1), i) and (
(bp2), i) actually correspond to two
different instances of the same session in the schedule.

7.3.1 The Cheating Prover

The cheating prover (denoted P ∗) starts by uniformly selecting a triplet
(σ, g, h) while hoping that (σ, g, h) ∈ AC. It next selects uniformly a pair
(ξ, η) ∈ {1, . . . , tS(n)}×{1, . . . , n}, where the simulator’s running time, tS(n),
acts as a bound on the number of (different block prefixes induced by the)
queries made by S on input x ∈ {0, 1}n. The prover next emulates an exe-

cution of S
V

g,h(r)
σ (x) (where h(r), which is essentially equivalent to h, will be

defined below), while interacting with V (x, r) (that is, the honest verifier, run-
ning on input x and using coins r). The prover handles the simulator’s queries
as well as the communication with the verifier as follows: Suppose that the
simulator makes query q = (b1, a1, . . . , bt, at), where the a’s are prover mes-
sages.

1. Operating as Vg,h, the cheating prover determines the block prefix bp(q) =
(b1, a1, . . . , bγ , aγ). It also determines (
, i) = πsn(q), j = πmsg(q), the
iteration prefix ip(q) = (b1, a1, . . . , bδ, p

(n)
j−1), and the j−1 prover messages

p
(i)
1 , . . . , p

(i)
j−1 appearing in the query q (as done by Vg,h in Step 2). (Note

that by the modification of S there is no need to perform Steps 1 and 1′

of Vg,h.)
2. If j = 1, the cheating prover answers the simulator with the verifier’s fixed

initiation message for session i (as done by Vg,h in Step 3).
3. If j > 1, the cheating prover determines bi,j = g(i, ip(q)) (as done by Vg,h

in Step 4).
4. If bp(q) is the ξth distinct block prefix resulting from the simulator’s

queries so far and if, in addition, i equals η, then the cheating prover
operates as follows:
a) If bi,j = 0, then the cheating prover answers the simulator with ABORT.

Motivating Discussion for Substeps b and c: The cheating prover has

now reached a point in the schedule in which it is supposed to feed the

simulator with v
(i)
j . To do so, it first forwards p

(i)
j−1 to the honest verifier



134 7 Black-Box cZK Requires Logarithmically Many Rounds

V (x, r), and only then feeds the simulator with the verifier’s answer v
(i)
j (as

if it were the answer given by Vg,h(r)). We stress the following two points:

(1) The cheating prover cannot forward more than one p
(i)
j−1 message to V

(since P ∗ and V engage in an actual execution of the protocol 〈P, V 〉). (2)

The cheating prover will wait and forward p
(i)
j−1 to the verifier only when

v
(i)
j is the next scheduled message.

b) If bi,j = 1 and the cheating prover has only sent j−2 messages to the
actual verifier, the cheating-prover forwards p

(i)
j−1 to the verifier, and

feeds the simulator with the verifier’s response (i.e., which is of the
form v

(i)
j ).14

(We comment that by our conventions regarding the simulator, it cannot be

the case that the cheating prover has sent less than j−2 prover messages to

the actual verifier. The prefixes of the current query dictate j−2 sequences

of prover messages with distinct lengths, so that none of these sequences

was answered with ABORT. In particular, the last message of each one of

these sequences was already forwarded to the verifier.)

c) If bi,j = 1 and the cheating prover has already sent j−1 messages (or
more) to the actual verifier then it retrieves the (j−1)st answer it has
received and feeds it to the simulator.
(We comment that this makes sense provided that the simulator never

makes two queries with the same block prefix and the same number of

prover messages, but with a different sequence of such messages. However,

for j ≥ 2 it may be the case that a previous query regarding the same block

prefix had a different p
(i)
j−1 message. This is the case in which the cheating

prover may fail to conduct Step 4c; see further discussion below.)

5. If either bp(q) is NOT the ξth distinct block prefix resulting from the
queries so far, or if i is NOT equal to η, the prover emulates Vg,h in the
obvious manner (i.e., as in Step 4 of Vg,h):
a) If bi,j = 0, then the cheating prover answers the simulator with ABORT.
b) If bi,j = 1, then the cheating prover determines ri = h(i, bp(q)), and

then answers the simulator with V (x, ri; p
(i)
1 , . . . , p

(i)
j−1), where all no-

tations are as above.

On the Efficiency of the Cheating Prover. Notice that the strategy of the
cheating prover can be implemented in polynomial-time (that is, given that
the simulator’s running time, tS(·), is polynomial as well). Thus, Lemma 7.2.5
(and so Theorem 7.1) will also hold if 〈P, V 〉 is an argument system (since,

14Note that in the special case that j = 1 (i.e., when the verifier’s response is the

fixed initiation message v
(i)
1 ), the cheating prover cannot really forward p

(i)
j−1 to the

honest verifier (since no such message exists). Still, since v
(i)
1 is a fixed initiation

message, the cheating prover can produce v
(i)
1 without actually having to interact

with the honest verifier (as it indeed does in Step 2 of the cheating prover strategy).
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in the case of argument systems, the existence of an efficient P ∗ leads to
contradiction of the (strong) computational soundness of 〈P, V 〉).
The Cheating Prover May “Do Nonsense” in Step 4c. The cheating
prover is hoping to convince an honest verifier by focusing on the ηth session in
recursive block number 
(bpξ), where bpξ denotes the ξth distinct block prefix

in the simulator’s execution. Prover messages in session (
(bpξ), η) are received
from the (multi-session) simulator and are forwarded to the (single-session)
verifier. The honest verifier’s answers are then fed back to the simulator as if
they were answers given by Vg,h(r) (defined below). For the cheating prover
to succeed in convincing the honest verifier the following two conditions must
be satisfied: (1) session (
(bpξ), η) is eventually accepted by Vg,h(r) ; (2) the
cheating prover never “does nonsense” in Step 4c during its execution. Let us
clarify the meaning of this “nonsense”.

One main problem that the cheating prover is facing while conducting
Step 4c emerges from the following fact. Whereas the black-box simulator is
allowed to “rewind” Vg,h(r) (impersonated by the cheating prover) and attempt
different execution prefixes before proceeding with the interaction of a session,
the prover cannot do so while interacting with the actual verifier. In particular,
the cheating prover may reach Step 4c with a p

(η)
j−1 message that is different

from the p
(η)
j−1 message that was previously forwarded to the honest verifier

(in Step 4b). Given that the verifier’s answer to the current p
(η)
j−1 message is

most likely to be different than the answer which was given to the “previous”
p
(η)
j−1 message, by answering (in Step 4c) in the same way as before, the prover

action “makes no sense”.15

We stress that, at this point in its execution, the cheating prover might
as well have stopped with some predetermined “failure” message (rather than
“doing nonsense”). However, for simplicity of presentation, it is more conve-
nient for us to let the cheating prover “do nonsense”.

The punchline of the analysis is that with noticeable probability (over
choices of (σ, g, h)), there exists a choice of (ξ, η) so that the above “bad” event
will not occur for session (
(bpξ), η). That is, using the fact that the success
of a “rewinding” also depends on the output of g (which determines whether
and when sessions are aborted) we show that, with non-negligible probability,
Step 4c is never reached with two different p

(η)
j−1 messages. Specifically, for

every j ∈ {2, . . . , k +1}, once a p
(η)
j−1 message is forwarded to the verifier

15We stress that the cheating prover does not know the random coins of the honest
verifier, and so it cannot compute the verifier’s answers by himself. In addition, since
P ∗ and V are engaging in an actual execution of the specified protocol 〈P, V 〉 (in
which every message is sent exactly once), the cheating prover cannot forward the

“recent” p
(η)
j−1 message to the honest verifier in order to obtain the corresponding

answer (because it has already forwarded the previous p
(η)
j−1 message to the honest

verifier).
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(in Step 4b), all subsequent p
(η)
j−1 messages are either equal to the forwarded

message or are answered with ABORT (here we assume that session (
(bpξ), η)
is eventually accepted by Vg,h(r) , and every p

(η)
j−1 message is forwarded to the

verifier at least once).

Defining h(r) (Mentioned Above). Let (σ, g, h) and (ξ, η) be the initial
choices made by the cheating prover, let bpξ be the ξth block prefix appearing
in execx(σ, g, h), and suppose that the honest verifier uses coins r. Then,
the function h(r) = h(r,σ,g,h,ξ,η) is defined to be uniformly distributed among
the functions h′ which satisfy the following conditions: The value of h′ when
applied on (η, bpξ) equals r, whereas for (η′, ξ′) �= (η, ξ) the value of h′ when
applied on (η′, bpξ′) equals the value of h on this prefix. (The set of such func-
tions h′ is not empty due to the hypothesis that the functions are selected in a
family of tS(n)-wise independent hash functions.) We note that replacing h by
h(r) does not affect Step 5 of the cheating prover, and that the cheating prover
does not know h(r). In particular, whenever the honest verifier V uses coins
r, one may think of the cheating prover as if it is answering the simulator’s
queries with the answers that would have been given by Vg,h(r) .

Claim 7.3.2 For every value of σ, g, ξ and η, if h and r are uniformly dis-
tributed then so is h(r).

Proof Sketch Fix some simulator coins σ ∈ {0, 1}∗, g ∈ G, block prefix
index ξ ∈ {1, . . . , tS(n)}, and session index η ∈ {1, . . . , n}. The key for proving
Claim 7.3.2 is to view the process of picking a function h ∈ H as consisting of
two stages. The first stage is an iterative process in which up to tS(n) different
arguments are adversarially chosen, and for each such argument the value of
h on this argument is uniformly selected in its range. In the second stage, a
function h is chosen uniformly from all h’s in H under the constraints that
are introduced in the first stage. The iterative process in which the arguments
are chosen (that is, the first stage above) corresponds the simulator’s choice of
the various block prefixes bp (along with the indices i), on which h is applied.

At first glance, it seems obvious that the function h(r), which is uniformly
distributed amongst all functions that are defined to be equal to h on all inputs
(except for the input (η, bpξ) on which it equals r) is uniformly distributed in
H. Taking a closer look, however, one realizes that a rigorous proof for the
above claim is more complex than one may initially think, since it is not even
clear that a h that is defined by the above process actually belongs to the
family H.

The main difficulty in proving the above lies in the fact that the simu-
lator’s queries may “adaptively” depend on previous answers it has received
(which, in turn, may depend on previous outcomes of h). The key observation
used in order to overcome this difficulty is that for every family of tS(n)-wise
independent functions and for every sequence of at most tS(n) arguments (and
in particular, for an adaptively chosen sequence), the values of a uniformly
chosen function when applied to the arguments in the sequence are uniformly
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and independently distributed. Thus, as long as the values assigned to the
function in the first stage of the above process are uniformly and indepen-
dently distributed (which is indeed the case, even if we constraint one output
to be equal to r), the process will yield a uniformly distributed function from
H.

7.3.2 The Success Probability of the Cheating Prover

We start by introducing two important notions that will play a central role
in the analysis of the success probability of the cheating prover.

Grouping Queries According to Their Iteration Prefixes

In the sequel, it will be convenient to group the queries of the simulator into
different classes based on different iteration prefixes. (Recall that the iteration
prefix of a query q (satisfying πsn(q)=(
, i) and πmsg(q)= j >1) is the prefix
of q that ends with the (j−1)st prover message in session (
, n).). Grouping
by iteration prefixes particularly makes sense in the case that two queries are
of the same length (see discussion below). Nevertheless, by Definition 7.2.3,
two queries may have the same iteration prefix even if they are of different
lengths (see below).

Definition 7.3.3 (ip-different queries) Two queries, q1 and q2 (of possibly
different lengths), are said to be ip-different, if and only if they have different
iteration prefixes (that is, ip(q1) �= ip(q2)).

By Definition 7.2.3, if two queries, q1 and q2, satisfy ip(q1) = ip(q2), then the
following two conditions must hold: (1) πsn(q1) = (
, i1), πsn(q2) = (
, i2) and;
(2) πmsg(q1) = πmsg(q2). However, it is not necessarily true that i1 = i2. In
particular, it may very well be the case that q1, q2 have different lengths (i.e.,
i1 �= i2) but are not ip-different (note that if i1 = i2 then q1 and q2 are of
equal length). Still, even if two queries are of the same length and have the
same iteration prefix, it is not necessarily true that they are equal, as they
may be different at some message which occurs after their iteration prefixes.

Motivating Definition 7.3.3. Recall that a necessary condition for the suc-
cess of the cheating prover is that for every j, once a p

(η)
j−1 message has been

forwarded to the verifier (in Step 4b), all subsequent p(η)
j−1 messages (that are

not answered with ABORT) are equal to the forwarded message. In order to
satisfy the above condition it is sufficient to require that the cheating prover
never reaches Steps 4b and 4c with two ip-different queries of equal length.
The reason for this is that if two queries of the same length have the same
iteration prefix, then they contain the same sequence of prover messages for
the corresponding session (since all such messages are contained in the iter-
ation prefix), and so they agree on their p

(η)
j−1 message. In particular, once a
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p
(η)
j−1 message has been forwarded to the verifier (in Step 4b), all subsequent

queries that reach Step 4c and are of the same lenght will have the same p(η)
j−1

messages as the first such query (since they have the same iteration prefix).
In light of the above discussion, it is only natural to require that the num-

ber of ip-different queries that reach Step 4c of the cheating prover is exactly
one (as, in such a case, the above necessary condition is indeed satified).16

Jumping ahead, we comment that the smaller is the number of ip-different
queries that correspond to block prefix bpξ, the smaller is the probability that
more than one ip-different query reaches Step 4c. The reason for this lies in the
fact that the number of ip-different queries that correspond to block prefix bpξ

is equal to the number of different iteration prefixes that correspond to bpξ.
In particular, the smaller the number of such iteration prefixes, the smaller
the probability that g will evaluate to 1 on more than a single iteration prefix
(thus reaching Step 4c with more than one ip-different query).

Useful Block Prefixes

The probability that the cheating prover makes the honest verifier accept
will be lower bounded by the probability that the ξth distinct block prefix in
execx(σ, g, h) is η-useful (in the sense hinted above and defined next):

Definition 7.3.4 (Useful block prefix) A block prefix bp = (b1, a1, . . . , bγ , aγ),
that appears in execx(σ, g, h), is called i-useful if it satisfies the following two
conditions:

1. For every j ∈ {2, . . . , k + 1}, the number of ip-different queries q in
execx(σ, g, h) that correspond to block prefix bp and satisfy πsn(q) =
(
(bp), i), πmsg(q)=j, and g(i, ip(q))=1, is exactly one.

2. The (only) query q in execx(σ, g, h) that corresponds to block prefix bp

and that satisfies πsn(q) = (
(bp), i), πmsg(q) = k+1, and g(i, ip(q)) = 1,
is answered with ACCEPT by Vg,h.

If there exists an i∈{1, . . . , n}, so that a block prefix is i-useful, then this block
prefix is called useful.

Condition 1 in Definition 7.3.4 states that for every fixed value of j there exists
exactly one iteration prefix, ip, that corresponds to queries of the block prefix
bp and the jth message so that g(i, ip) evaluates to 1. Condition 2 asserts that
the last verifier message in the ith main session of recursive block number

 = 
(bp) is equal to ACCEPT. It follows that if the cheating prover happens to
select (σ, g, h, ξ, η) so that block prefix bpξ (i.e., the ξth distinct block prefix
in execx(σ, g, h(r))) is η-useful, then it convinces V (x, r); the reason being
that (by Condition 2) the last message in session (
(bpξ), η) is answered with

16In order to ensure the cheating prover’s success, the above requirement should

be augmented by the condition that session (
(bpξ), η) is accepted by Vg,h(r) .
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ACCEPT,17 and that (by Condition 1) the emulation does not get into trouble
in Step 4c of the cheating prover (to see this, notice that each prover message
in session (
(bpξ), η) will end up reaching Step 4c only once).

Let 〈P ∗, V 〉(x) = 〈P ∗(σ, g, h, ξ, η), V (r)〉(x) denote the random variable
representing the (local) output of the honest verifier V when interacting with
the cheating prover P ∗ on common input x, where σ, g, h, ξ, η are the initial
random choices made by the cheating prover P ∗, and r is the randomness used
by the honest verifier V . Adopting this notation, we will say that the cheating
prover P ∗ = P ∗(x, σ, g, h, ξ, η) has convinced the honest verifier V = V (x, r)
if 〈P ∗, V 〉(x) = ACCEPT. With these notations, we are ready to formalize the
above discussion.

Claim 7.3.5 If the cheating prover happens to select (σ, g, h, ξ, η) so that
the ξth distinct block prefix in execx(σ, g, h(r)) is η-useful, then the cheat-
ing prover convinces V (x, r) (i.e., 〈P ∗, V 〉(x)=ACCEPT).

Proof Let us fix x ∈ {0, 1}n, σ ∈ {0, 1}∗, g ∈ G, h ∈ H, r ∈ {1, . . . , ρV (n)},
η ∈ {1, . . . , n}, and ξ ∈ {1, . . . , tS(n)}. We show that if the ξth dis-
tinct block prefix in execx(σ, g, h(r)) is η-useful, then the cheating prover
P ∗(x, σ, g, h, ξ, η) convinces the honest verifier V (x, r).

By definition of the cheating-prover, the prover messages that are actually
forwarded to the honest verifier (in Step 4b) correspond to session (
(bpξ), η).
Specifically, messages that are forwarded by the cheating prover are of the form
p
(η)
j−1, and correspond to queries q, that satisfy πsn(q) = (
(bpξ), η), πmsg(q) = j

and g(η, ip(q)) = 1. Since the ξth distinct block prefix in execx(σ, g, h(r)) is
η-useful, we have that for every j ∈ {2, . . . , k+1}, there is exactly one query
q that satisfies the above conditions. Thus, for every j ∈ {2, . . . , k+1}, the
cheating prover never reaches Step 4c with two different p(η)

j−1 messages. Here
we use the fact that if two queries of the same length are not ip-different
(i.e., have the same iteration prefix) then the answers given by Vg,h(r) to these
queries are identical (see discussion above). This in particular means that
P ∗ is answering the simulator’s queries with the answers that would have
been given by V g,h(r)

itself. (Put in other words, whenever the ξth distinct
block prefix in execx(σ, g, h(r)) is η-useful, the emulation does not “get into
trouble” in Step 4c of the cheating prover.)

At this point, we have that the cheating prover never fails to perform
Step 4c, and so the interaction that it is conducting with V (x, r) reaches
“safely” the (k+1)st verifier message in the protocol. To complete the proof
we have to show that at the end of the interaction with the cheating-prover,
V (x, r) outputs ACCEPT. This is true since, by Condition 2 of Definition 7.3.4,
the query q, that corresponds to block prefix bpξ, satisfies πsn(q) = (
(bpξ), η),
πmsg(q) = j and g(η, ip(q)) = 1, is answered with ACCEPT. Here we use the

17Notice that V (x, r) behaves exactly as Vg,h(r) behaves on queries that corre-

spond to the ξth distinct iteration prefix in execx(σ, g, h(r)).
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fact that V (x, r) behaves exactly as Vg,h(r) behaves on queries that correspond
to the ξth distinct block prefix in execx(σ, g, h(r)).

Reduction to Rareness of Legal Transcripts Without Useful Block
Prefixes

The following lemma (Lemma 7.3.6) establishes the connection between
the success probability of the simulator and the success probability of the
cheating-prover. Loosely speaking, the lemma asserts that if S outputs a legal
transcript with non-negligible probability, then the cheating prover will suc-
ceed in convincing the honest verifier with non-negligible probability. Since
this is in contradiction to the computational soundness of the proof system,
we have that Lemma 7.3.6 actually implies the correctness of Lemma 7.2.5 (re-
call that the contradiction hypothesis of Lemma 7.2.5 is that the probability
that the simulator outputs a legal transcript is non-negligible).

Lemma 7.3.6 Suppose that Prσ,g,h[(σ, g, h) ∈ AC] > 1/p(n) for some fixed
polynomial p(·). Then the probability (taken over σ, g, h, ξ, η, r), that 〈P ∗, V 〉(x)
equals ACCEPT is at least 1

2·p(n)·tS(n)·n .

Proof Define a Boolean indicator usefulξ,η(σ, g, h) to be true if and only if
the ξth distinct block prefix in execx(σ, g, h) is η-useful. Using Claim 7.3.5,
we have:

Prσ,g,h,ξ,η,r [〈P ∗, V 〉(x) = ACCEPT] ≥ Prσ,g,h,ξ,η,r

[
usefulξ,η(σ, g, h(r))

]
(7.2)

where the second probability refers to an interaction between S and Vg,h(r) .
Since for every value of σ, g, η and ξ, when h and r are uniformly selected the
function h(r) is uniformly distributed (see Claim 7.3.2), we infer that:

Prσ,g,h,ξ,η,r

[
usefulξ,η(σ, g, h(r))

]
= Prσ,g,h′,ξ,η [usefulξ,η(σ, g, h′)] . (7.3)

On the other hand, since ξ and η are distributed independently of (σ, g, h),
we have that Prσ,g,h,ξ,η [usefulξ,η(σ, g, h)] equals

tS(n)∑
�=1

n∑
i=1

Prσ,g,h,ξ,η [useful�,i(σ, g, h) & (ξ = 
 & η = i)] (7.4)

=
tS(n)∑
�=1

n∑
i=1

Prσ,g,h [useful�,i(σ, g, h)] · Prξ,η [ξ = 
 & η = i]

=
tS(n)∑
�=1

n∑
i=1

Prσ,g,h [useful�,i(σ, g, h)] · 1
tS(n) · n

≥ Prσ,g,h [∃
, i s.t. useful�,i(σ, g, h)] · 1
tS(n) · n (7.5)
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where tS(n) is the bound used by the cheating prover (for the number of
distinct block prefixes in execx(σ, g, h)). Combining (7.2), (7.3), and (7.4) we
get:

Prσ,g,h,ξ,η,r [〈P ∗, V 〉(x) = ACCEPT]

≥ Prσ,g,h [∃
, i s.t. useful�,i(σ, g, h)] · 1
tS(n) · n. (7.6)

Recall that by our hypothesis, Pr[(σ, g, h) ∈ AC] > 1/p(n) for some fixed
polynomial p(·). We can thus lower bound Prσ,g,h [∃
, i s.t. useful�,i(σ, g, h)] in
the following way:

Pr
[
∃
, i s.t. useful�,i(σ, g, h)

]
=1− Pr

[
∀
, i ¬useful�,i(σ, g, h)

]
=1− Pr

[
(∀
, i ¬useful�,i(σ, g, h)) & ((σ, g, h)�∈AC)

]
− Pr

[
(∀
, i ¬useful�,i(σ, g, h)) & ((σ, g, h)∈AC)

]
≥1− Pr

[
(σ, g, h) �∈ AC

]
− Pr

[
(∀
, i ¬useful�,i(σ, g, h)) & (σ, g, h) ∈ AC

]
>1/p(n) − Pr

[
(∀
, i ¬useful�,i(σ, g, h)) & (σ, g, h) ∈ AC

]
where all the above probabilities are taken over (σ, g, h). It follows that in
order to show that Prσ,g,h,ξ,η,r [〈P ∗, V 〉(x) = ACCEPT] > 1

2·p(n)·tS(n)·n , it will
be sufficient to prove that for every fixed polynomial p′(·) it holds that:

Prσ,g,h [(∀
, i ¬useful�,i(σ, g, h)) & (σ, g, h) ∈ AC] < 1/p′(n) (7.7)

Thus, Lemma 7.3.6 is true provided that

Prσ,g,h [∀
, i ¬useful�,i(σ, g, h) & (σ, g, h) ∈ AC]

is negligible.

Lemma 7.3.7 For every σ ∈ {0, 1}∗ and every h ∈ H, the probability
(taken over g), that for all pairs (
, i) useful�,i(σ, g, h) does not hold and that
(σ, g, h) ∈ AC, is negligible. That is, the probability that execx(σ, g, h) does
not contain a useful block prefix and S outputs a legal transcript is negligible.

Notice that Lemma 7.3.7 is actually stronger than what we need, since it
asserts that (7.7) is negligible for every choice of σ, h. This completes the
proof of Lemma 7.3.6. In the rest of this section we prove Lemma 7.3.7.
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7.3.3 Legal Transcripts Yield Useful Block Prefixes

We now prove Lemma 7.3.7. The proof will proceed as follows. We first define
a special kind of block prefix, called potentially useful block prefixes. Loosely
speaking, these are block prefixes in which the simulator does not make too
many “rewinding” attempts (each “rewinding” corresponds to a different it-
eration prefix). Intuitively, the larger the number of “rewinds” is, the smaller
is the probability that a specific block prefix is useful. A block prefix with a
small number of “rewinds” is thus more likely to cause its block prefix to be
useful. Thus our basic approach will be to show that:

1. In every “successful” execution (i.e., producing a legal transcript), the
simulator generates a potentially useful block prefix. This is proved by
demonstrating, based on the structure of the schedule, that if no po-
tentially useful block prefix exists, then the simulation must take super-
polynomial time.

2. Any potentially useful block prefix is in fact useful with considerable prob-
ability. The argument that demonstrates this claim proceeds basically as
follows. Consider a specific block prefix bp, let 
 = 
(bp), and focus on a
specific instance of session (
, i) (that is, the specific instance of session
(
, i) that corresponds to block prefix bp). Suppose that block prefix bp
is potentially useful and that the above instance of session (
, i) happens
to be accepted by Vg,h. This means that there exist k queries with block
prefix bp that consist of the “main thread” that leads to acceptance (i.e.,
all queries that were not answered with ABORT). Recall that the decision
to abort a session (
, i) is made by applying the function g to i and the
iteration prefix of the corresponding query. Thus, if there are only few dif-
ferent iteration prefixes that correspond to block prefix bp (which, as we
said, is potentially useful), then there is considerable probability that all
the queries having block prefix bp, but which do not belong to that “main
thread”, will be answered with ABORT (that is, g will evaluate to 0 on the
corresponding input). If this lucky event occurs, then block prefix bp will
indeed be useful (recall that for a block prefix to be useful we require that
there exists a corresponding session that is accepted by Vg,h and satisfies
that for every j ∈ {2, . . . , k+1} there is a single iteration prefix that makes
g evaluate to 1 at the jth message of this session).

Returning to the actual proof, we start by introducing the necessary definition
(of a potentially useful block prefix). Recall that, for any g ∈ G and h ∈ H,
the running time of the simulator S with oracle access to Vg,h is bounded by
tS(n). Let c be a constant such that tS(n) ≤ nc for all sufficiently large n.

Definition 7.3.8 (Potentially useful block prefix) A block prefix bp =(b1, a1,
. . . , bγ , aγ), that appears in execx(σ, g, h), is called potentially useful if it sat-
isfies the following two conditions:

1. The number of ip-different queries that correspond to block prefix bp is at
most kc+1.
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2. The execution of the simulator reaches the end of the block that corre-
sponds to block prefix bp. That is, execx(σ, g, h) contains a query q, that
ends with the (k+1)st prover message in the nth main session of recursive

block number 
(bp) (i.e., some p
(�(bp),n)
k+1 message).

We stress that the bound kc+1 in Condition 1 above refers to the same con-
stant c > 0 that is used in the time bound tS(n) ≤ nc. Using Definition 7.3.3
(of ip-different queries), we have that a bound of kc+1 on the number of ip-
different queries that correspond to block prefix bp induces an upper bound
on the total number of iteration prefixes that correspond to block prefix bp.
Note that this is in contrast to the definition of a useful block prefix (Defini-
tion 7.3.4), in which we only have a bound on the number of ip-different queries
of a specific length (i.e., the number of ip-different queries that correspond to
specific message in a specific session).

Turning to Condition 2 of Definition 7.3.8 we recall that the query q ends

with a p
(�(bp),n)
k+1 message (i.e., the last prover message of recursive block num-

ber 
(bp)). Technically speaking, this means that q does not actually corre-
spond to block prefix bp (since, by definition of the recursive schedule, the
answer to query q is a message that does not belong to recursive block num-
ber 
(bp)). Nevertheless, since before making query q, the simulator has made
queries to all prefixes of q, we are guaranteed that for every i ∈ {1, . . . , n}
and j ∈ {1, . . . , k +1}, the simulator has made a query qi,j that is a pre-

fix of q, corresponds to block prefix bp, and satisfies πsn(q) = (
(bp), i) and
πmsg(q) = j. (In other words, all messages of all sessions in recursive block
number 
(bp) have occurred during the execution of the simulator.) Further-
more, since the (modified) simulator does not make a query that is answered
with a DEVIATION message (in Step 1′ of Vg,h) and it does make the query q ,
we are guaranteed that the partial execution transcript induced by the query
q contains the accepting conversations of at least n1/2

4 sessions in recursive
block number 
(bp). (The latter observation will be used only at a later stage,
while proving Lemma 7.3.7.)

It is worth noting that whereas the definition of a useful block prefix refers
to the contents of iteration prefixes (induced by the queries) that are sent by
the simulator, the definition of a potentially useful block prefix refers only to
their quantity (neither to their contents nor to the effect of the application of
g on them).18 It is thus natural that statements referring to potentially useful
block prefixes tend to have a combinatorial flavor. The following lemma is no
exception. It asserts that every “successful” execution of the simulator must

18In particular, whereas the definition of a useful block prefix refers to the outcome
of g on iteration prefixes that correspond to the relevant block prefix, the definition
of a potentially useful block prefix refers only to the number of ip-different queries
that correspond to the block prefix (ignoring the outcomes of g on the relevant
iteration prefixes).
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contain a potentially useful block prefix (or, otherwise, the simulator will run
in super-polynomial time).

Lemma 7.3.9 For any (σ, g, h) ∈ ACx, execx(σ, g, h) contains a potentially
useful block prefix.

7.3.4 Existence of Potentially Useful Block Prefixes

We now prove Lemma 7.3.9. The proof is by contradiction. We assume the
existence of a triplet (σ, g, h) ∈ AC so that every block prefix in execx(σ, g, h)
is not potentially useful, and show that this implies that SVh

σ (x) made strictly
more than nc queries (which contradicts the explicit hypothesis that the run-
ning time of S is bounded by nc).

The Query-And-Answer Tree. Throughout the proof of Lemma 7.3.9,
we will fix an arbitrary (σ, g, h) ∈ AC as above, and study the correspond-
ing execx(σ, g, h). A key vehicle in this study is the notion of a query-and-
answer tree introduced in [83] (and also used in [97]).19 This is a rooted tree
(corresponding to execx(σ, g, h)) in which vertices are labeled with verifier
messages and edges are labeled with prover’s messages. The root is labeled
with the fixed verifier message initializing the first session, and has outgoing
edges corresponding to the prover’s messages initializing this session. In gen-
eral, paths down the tree (i.e., from the root to some vertices) correspond to
queries. The query associated with such a path is obtained by concatenating
the labeling of the vertices and edges along the path in the order traversed. We
stress that each vertex in the query-and-answer tree corresponds to a query
actually made by the simulator.

The index of the verifier (resp., prover) message labelling a specific vertex
(resp., edge) in the tree is completely determined by the level in which the
vertex (resp., edge) lies. That is, all vertices (resp., edges) in the ωth level of
the tree are labeled with the ωth verifier (resp., prover) message in the schedule
(out of a total of n2·(k+1) scheduled messages). For example, if ω = n2·(k+1) all
vertices (resp., edges) at the ωth level (which is the lowest possible level in the
tree) are labeled with v

(1,n)
k+1 (resp., p(1,n)

k+1 ). The difference between “sibling”
vertices in the same level of the tree lies in the difference in the labels of
their incoming edges (as induced by the simulator’s “rewinds”). Specifically,
whenever the simulator “rewinds” the interaction to the ωth verifier message
in the schedule (i.e., makes a new query that is answered with the ωth verifier
message), the corresponding vertex in the tree (which lies at the ωth level) will
have multiple descendants one level down in the tree (i.e., at the (ω+1)st level).
The edges to each one of these descendants will be labeled with a different

19The query-and-answer tree should not be confused with the tree that is induced
by the recursive schedule.
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prover message.20 We stress that the difference between these prover messages
lies in the contents of the corresponding message (and not in its index).
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Fig. 7.6. The query-and-answer-tree. (a) Interaction with P . (b) Simulation.

By the above discussion, the outdegree of every vertex in the query-and-
answer tree corresponds to the number of “rewinds” that the simulator has
made to the relevant point in the schedule (the order in which the outgoing
edges appear in the tree does not necessarily correspond to the order in which
the “rewinds” were actually performed by the simulator). Vertices in which
the simulator does not perform a “rewinding” will thus have a single outgoing
edge. In particular, in case that the simulator follows the prescribed prover
strategy P (sending each scheduled message exactly once), all vertices in the
tree will have outdegree one, and the tree will actually consist of a single path
of total length n2 · (k+1) (ending with an edge that is labeled with a p

(n,n)
k+1

message).
Recall that, by our conventions regarding the simulator, before making

a query q the simulator has made queries to all prefixes of q. Since every
query corresponds to a path down the tree, we have that every particular
path down the query-and-answer tree is developed from the root downwards

20In particular, the shape of the query-and-answer tree is completely determined
by the contents of prover messages in execx(σ, g, h) (whereas the contents of verifier
answers given by Vg,h have no effect on the shape of the tree).
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(that is, within a specific path, a level ω < ω′ vertex is always visited before
a level ω′ vertex). However, we cannot say anything about the order in which
different paths in the tree are developed (for example, we cannot assume that
the simulator has made all queries that end at a level ω vertex before making
any other query that ends at a level ω′ > ω vertex, or that it has visited all
vertices of level ω in some specific order). To summarize, the only guarantee
that we have about the order in which the query-and-answer tree is developed
is implied by the convention that before making a specific query, the simulator
has made queries to all relevant prefixes.

Satisfied Path. A path from one node in the tree to some of its descendants
is said to satisfy session i if the path contains edges (resp., vertices) for each
of the messages sent by the prover (resp., verifier) in session i. A path is
called satisfied if it satisfies all sessions for which the verifier’s first message
appears along the path. One important example for a satisfied path is the
path that starts at the root of the query-and-answer tree and ends with an
edge that is labeled with a p

(n,n)
k+1 message. This path contains all n2 · (k+1)

messages in the schedule (and so satisfies all n2 sessions in the schedule). We
stress that the contents of messages (occurring as labels) along a path are
completely irrelevant to the question of whether the path is satisfied or not.
In particular, a path may be satisfied even if some (or even all) of the vertices
along it are labeled with ABORT.

Recall that, by our conventions, the simulator never makes a query that is
answered with the DEVIATION message. We are thus guaranteed that, for every
completed block along a path in the tree, at least n1/2

4 sessions are accepted by
Vg,h. In particular, the vertices corresponding to messages of these accepted
sessions cannot be labeled with ABORT.

Good Subtree. Consider an arbitrary subtree (of the query-and-answer tree)
that satisfies the following two conditions:

1. The subtree is rooted at a vertex corresponding to the first message of
some session so that this session is the first main session of some recursive
invocation of the schedule.

2. Each path in the subtree is truncated at the last message of the relevant
recursive invocation.

The full tree (i.e., the tree rooted at the vertex labeled with the first message
in the schedule) is indeed such a tree, but we will need to consider subtrees
which correspond to m sessions in the recursive schedule construction (i.e.,
correspond to Rm). We call such a subtree m-good if it contains a satisfied
path starting at the root of the subtree. Since (σ, g, h)∈AC, we have that the
simulator has indeed produced a “legal” transcript as output. It follows that
the full tree contains a path from the root to a leaf that contains vertices
(resp., edges) for each of the messages sent by the verifier (resp., prover) in all
n2 sessions of the schedule (as otherwise the transcript S

Vg,h
σ (x) would have
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not been legal). In other words, the full tree contains a satisfied path and is
thus n2-good.

Note that, by the definition of the recursive schedule, two m-good subtrees
are always disjoint. On the other hand, if m′ < m, it may be the case that an
m′-good subtree is contained in another m-good subtree. As a matter of fact,
since an m-good subtree contains all messages of all sessions in a recursive
block corresponding to Rm, then it must contain at least k disjoint m−n

k -good
subtrees (i.e., that correspond to k the recursive invocations of Rm−n

k
made

by Rm).
The next lemma (which can be viewed as the crux of the proof) states that,

if the contradiction hypothesis of Lemma 7.3.9 is satisfied, then the number
of disjoint m−n

k -good subtrees that are contained in an m-good subtree is
actually considerably larger than k.

Lemma 7.3.10 Suppose that every block prefix that appears in execx(σ, g, h)
is not potentially useful. Then for every m ≥ n, every m-good subtree contains
at least kc+1 disjoint m−n

k -good subtrees.

Denote by W (m) the size of an m-good subtree. (That is, W (m) actually
represents the work performed by the simulator on m concurrent sessions in
our fixed scheduling.) It follows (from Lemma 7.3.10) that any m-good subtree
must satisfy:

W (m) ≥
{

1 if m ≤ n
kc+1 · W

(
m−n

k

)
if m > n.

(7.8)

Claim 7.3.11 For all sufficiently large n, W (n2) > nc.

Proof By applying (7.8) iteratively logk(n − 1) times, we get:

W (n2) ≥
(
kc+1

)logk(n−1) · W (n)

≥
(
kc+1

)logk(n−1) · 1
= (n − 1)c+1

> nc (7.9)

where 7.9 holds for all sufficiently large n.
Since every vertex in the query-and-answer tree corresponds to a query actu-
ally made by the simulator, it follows that the hypothesis that the simulator
runs in time that is bounded by nc (and hence the full n2-good tree must
have been of size at most nc) is contradicted. Thus, Lemma 7.3.9 will actually
follow from Lemma 7.3.10.

Proof (of Lemma 7.3.10) Let T be an arbitrary m-good subtree of the query-
and-answer tree. Considering the m sessions corresponding to an m-good
subtree, we focus on the n main sessions of this level of the recursive con-
struction. Let BT denote the recursive block to which the indices of these n
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sessions belong. A T -query is a query q whose corresponding path down the
query-and-answer tree ends with a node that belongs to T (recall that ev-
ery query q appearing in execx(σ, g, h) corresponds to a path down the full
tree), and that satisfies πsn(q) ∈ BT .21 We first claim that all T -queries q in
execx(σ, g, h) have the same block prefix. This block prefix corresponds to
the path from the root of the full tree to the root of T , and is denoted by bpT .

Fact 7.3.12 All T -queries in execx(σ, g, h) have the same block prefix (de-
noted bpT ).

Proof Assume, towards contradiction, that there exist two different T -queries
q1, q2 so that bp(q1) �= bp(q2). In particular, bp(q1) and bp(q2) must differ in
a message that precedes the first message of the first main session in BT .
(Note that if two block prefixes are equal in all messages preceding the first
message of the first session of the relevant block then, by definition, they are
equal.22) This means that the paths that correspond to q1 and q2 split from
each other before they reach the root of T (remember that T is rooted at a
node corresponding to the first main session of recursive block BT ). But this
contradicts the fact that both paths that correspond to these queries end with
a node in T , and the fact follows.

Using the hypothesis that no block prefix in execx(σ, g, h) is potentially use-
ful, we prove:

Claim 7.3.13 Let T be an m-good subtree. Then the number of ip-different
queries that correspond to block prefix bpT is at least kc+1.

Proof Since all block prefixes that appear in execx(σ, g, h) are not poten-
tially useful (by the hypothesis of Lemma 7.3.10), this holds as a special case
for block prefix bpT . Let 
 = 
(bpT ) be the index of the recursive block that
corresponds to block prefix bpT in execx(σ, g, h). Since block prefix bpT is
not potentially useful, at least one of the two conditions of Definition 7.3.8 is
violated. In other words, one of the following two conditions is satisfied:

1. The number of ip-different queries that correspond to block prefix bpT is
at least kc+1.

2. The execution of the simulator does not reach the end of the block that
corresponds to block prefix bpT (i.e., there is no query in execx(σ, g, h)
that ends with a p

(�,n)
k+1 message that corresponds to block prefix bpT ).

21Note that queries q that satisfy πsn(q) ∈ BT do not necessarily correspond to a
path that ends with a node in T (as execx(σ, g, h) may contain a different subtree T ′

that satisfies BT = BT ′). Also note that there exist queries q, whose corresponding
path ends with a node that belongs to T , but satisfy πsn(q) �∈ BT . This is so, since
T may also contain vertices that correspond to messages in sessions which are not
main sessions of BT (in particular, all sessions that belong to the lower level recursive
blocks that are invoked by block BT ).

22Recall that the index of the relevant block is determined by the length of the
corresponding block prefix.
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Now, since T is an m-good subtree, then it must contain a satisfied path.
Such a path starts at the root of T and satisfies all sessions whose first verifier
message appears along the path. The key observation is that every satisfied
path that starts at the root of subtree T must satisfy all the main sessions in
BT (to see this, notice that the first message of all main sessions in BT will
always appear along such a path), and so it contains all messages of all main
session in recursive block BT . In particular, the subtree T contains a path that
starts at the root of T and ends with an edge that is labeled with the last
prover message in session number (
, n) (i.e., a p

(�,n)
k+1 message). In other words,

the execution of the simulator does reach the end of the block that corresponds
to block prefix bpT (since, for the above path to exist, the simulator must have
made a query that ends with a p

(�,n)
k+1 message that corresponds to block prefix

bpT ), and so Condition 2 above does not apply. Thus, the only reason that may
cause block prefix bpT not to be potentially useful is Condition 1. We conclude
that the number of ip-different queries that correspond to block prefix bpT is
at least kc+1, as required.

The following claim establishes the connection between the number of ip-
different queries that correspond to block prefix bpT and the number of m−n

k -
good subtrees contained in T . Loosely speaking, this is achieved based on the
following three observations: (1) Two queries are said to be ip-different if and
only if they have different iteration prefixes. (2) Every iteration prefix is a
block prefix of some sub-schedule one level down in the recursive construction
(consisting of m−n

k sessions). (3) Every such distinct block prefix yields a
distinct m−n

k -good subtree.

Claim 7.3.14 Let T be an m-good subtree. Then for every pair of ip-different
queries that correspond to block prefix bpT , the subtree T contains two disjoint
m−n

k -good subtrees.

Once Claim 7.3.14 is proved, we can use it in conjunction with Claim 7.3.13
to infer that T contains at least kc+1 disjoint m−n

k -good subtrees.

Proof Before we proceed with the proof of Claim 7.3.14, we introduce the
notion of an iteration suffix of a query q. This is the suffix of q that starts at
the ending point of the query’s iteration prefix. A key feature satisfied by an
iteration suffix of a query is that it contains all the messages of all sessions
belonging to some invocation of the schedule one level down in the recursive
construction (this follows directly from the structure of our fixed schedule).

Definition 7.3.15 (Iteration suffix) The iteration suffix of a query q (satisfy-
ing j = πmsg(q) > 1), denoted is(q), is the suffix of q that begins at the ending
point of the iteration prefix of query q. That is, for q = (b1, a1, . . . , at, bt) if
ip(q) = (b1, a1, . . . , bδ−1, aδ) then is(q) = (aδ, bδ+1, . . . , at, bt).23

23This means that aδ is of the form p
(�,n)
j−1 , where (
, i)=πsn(q) and j =πmsg(q).
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Let q be a query, and let (
, i)=πsn(q), j =πmsg(q). Let P(q) denote the path
corresponding to query q in the query-and-answer tree. Let Pip(q) denote the
subpath of P(q) that corresponds to the iteration prefix ip(q) of q, and let
Pis(q) denote the subpath of P(q) that corresponds to the iteration suffix is(q)
of q. That is, the subpath Pip(q) starts at the root of the full tree, and ends
at a p

(�,n)
j−1 message, whereas the subpath Pis(q) starts at a p

(�,n)
j−1 message

and ends at a v
(�,i)
j message (in particular, path P(q) can be obtained by

concatenating Pip(q) with Pis(q)24).

Fact 7.3.16 For every query q ∈ execx(σ, g, h), the subpath Pis(q) is satis-
fied. Moreover:

1. The subpath Pis(q) satisfies all m−n
k sessions of a recursive invocation one

level down in the recursive construction (i.e., corresponding to Rm−n
k

).

2. If q corresponds to block prefix bpT , then the subpath Pis(q) is contained
in T .

Proof Let (
, i)=πsn(q) and j =πmsg(q). By nature of our fixed scheduling,
the vertex in which subpath Pis(q) begins precedes the first message of all
(nested) sessions in the (j−1)st recursive invocation made by recursive block
number 
 (i.e., an instance of Rm−n

k
which is invoked by Rm). Since query q

is answered with a v
(�,i)
j message, we have that the subpath Pis(q) eventually

reaches a vertex labeled with v
(�,i)
j . In particular, the subpath Pis(q) (start-

ing at a p
(�,n)
j−1 edge and ending at a v

(�,i)
j vertex) contains the first and last

messages of each of the above (nested) sessions, and so contains edges (resp.,
vertices) for each prover (resp., verifier) message in these sessions. But this
means (by definition) that all these (nested) sessions are satisfied by Pis(q).
Since the above (nested) sessions are the only sessions whose first message
appears along the subpath Pis(q), we have that Pis(q) is satisfied. To see that
whenever q corresponds to block prefix bpT the subpath Pis(q) is contained
in the subtree T , we observe that both its starting point (i.e., a p

(�,n)
j−1 edge)

and its ending point (i.e., a v
(�,i)
j vertex) are contained in T .

Fact 7.3.17 Let q1, q2 be two ip-different queries. Then Pis(q1) and Pis(q2)
are disjoint.

Proof Let q1 and q2 be two ip-different queries, let (
1, i1)=πsn(q1), (
2, i2)=
πsn(q2), and let j1 = πmsg(q1), j2 = πmsg(q2). Recall that queries q1 and q2

are said to be ip-different if and only if they have different iteration prefixes.
Since q1 and q2 are assumed to be ip-different, then so are iteration prefixes
ip(q1) and ip(q2). In particular, the paths Pip(q1) and Pip(q2) are different.
We distinguish between the following two cases:

24To be precise, one should delete from the resulting concatenation one of the two
consecutive edges which are labeled with aδ = p

(�,n)
j−1 (one edge is the last in Pip(q)

and the other edge is the first in Pis(q)).
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1. Path Pip(q1) splits from Pip(q2): In such a case, the ending points of
paths Pip(q1) and Pip(q2) must belong to different subtrees of the query-
and-answer tree. Since the starting point of an iteration suffix is the end-
ing point of the corresponding iteration prefix, we must have that paths
Pis(q1) and Pis(q2) are disjoint.

2. Path Pip(q1) is a prefix of path Pip(q2): That is, both Pip(q1) and
Pip(q2) reach a v

(�1,n)
j1−1 vertex, while path Pip(q2) continues down the tree

and reaches a v
(�2,n)
j2−1 vertex. The key observation in this case is that either


1 is strictly smaller than 
2, or j1 is strictly smaller than j2. The reason
for this is that in case both 
1 = 
2 and j1 = j2 hold, iteration prefix
ip(q1) must be equal to iteration prefix ip(q2),25 in contradiction to our
hypothesis. Since path Pis(q1) starts at a p

(�1,n)
j1−1 vertex and ends with a

v
(�1,i1)
j1

vertex, and since path Pis(q2) starts with a p
(�2,n)
j2−1 vertex, we have

that the ending point of path Pis(q1) precedes the starting point of path
Pis(q2) (this is so since if j1 < j2, the p

(�1,i1)
j1

message will always pre-

cede/equal the p
(�2,n)
j2−1 message). In particular, paths Pis(q1) and Pis(q2)

are disjoint.

It follows that for every two ip-different queries, q1 and q2, subpaths Pis(q1)
and Pis(q2) are disjoint, as required.

Back to the proof of Claim 7.3.14, let q1 and q2 be two ip-different queries
that correspond to block prefix bpT (as guaranteed by the hypothesis of
Claim 7.3.14), and let Pis(q1) and Pis(q2) be as above. Consider the two
subtrees, T1 and T2, of T that are rooted at the starting point of subpaths
Pis(q1) and Pis(q2) respectively (note that, by Fact 7.3.16, T1 and T2 are
indeed subtrees of T ). By definition of our recursive schedule, T1 and T2 cor-
respond to m−n

k sessions one level down in the recursive construction (i.e., to
an instance of Rm−n

k
). Using Fact 7.3.16 we infer that subpath Pis(q1) (resp.,

Pis(q2)) contains all messages of all sessions in T1 (resp., T2), and so the
subtree T1 (resp., T2), is m−n

k -good. In addition, since subpaths Pis(q1) and
Pis(q2) are disjoint (by Fact 7.3.17) and since, by definition of an m−n

k -good
tree, two different m−n

k -good trees are always disjoint, then T1 and T2 (which,
being rooted at different vertices, must be different) are also disjoint. It fol-
lows that for every pair of different queries that correspond to block prefix
bpT , the subtree T contains two disjoint m−n

k -good subtrees.

We are finally ready to establish Lemma 7.3.10 (using Claims 7.3.13 and 7.3.14).
By Claim 7.3.13, we have that the number of different queries that correspond
to block prefix bpT is at least kc+1. Since (by Claim 7.3.14), for every pair

25That is, unless bp(q1) �= bp(q2). But in such a case, paths Pip(q1) and Pip(q2)
must split from each other (since they differ in some message that belongs to their
block prefix), and we are back to Case 1.
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of different queries that correspond to block prefix bpT the subtree T con-
tains two disjoint m−n

k -good subtrees, we infer that T contains a total of at
least kc+1 disjoint m−n

k -good subtrees (corresponding to the (at least) kc+1

different queries mentioned above). Lemma 7.3.10 follows.

7.3.5 Existence of Useful Block Prefixes

Now that the correctness of Lemma 7.3.9 is established, we may go back to
the proof of Lemma 7.3.7 and proceed with its proof. Let x ∈ {0, 1}n, and
fix σ ∈ {0, 1}∗, h ∈ H. We bound from above the probability, taken over the
choice of g

r←G, that (σ, g, h) ∈ AC and that for all 
 ∈ {1, . . . , tS(n)} and all
i ∈ {1, . . . , n}, the 
th distinct block prefix in execx(σ, g, h) is not i-useful.
Specifically, we would like to show that:

Prg

[
(∀
, i ¬useful�,i(σ, g, h)) & ((σ, g, h) ∈ AC)

]
(7.10)

is negligible. Define a Boolean indicator pot−use�(σ, g, h) to be true if and only
if the 
th distinct block prefix in execx(σ, g, h) is potentially useful. As proved
in Lemma 7.3.9, for any (σ, g, h) ∈ AC there exists an index 
 ∈ {1, . . . , tS(n)},
so that the 
th block prefix in execx(σ, g, h) is potentially useful. In other
words, for every (σ, g, h) ∈ AC, pot−use�(σ, g, h) holds for some value of 
.
Thus, (7.10) is upper bounded by:

Prg

⎡⎣tS(n)∨
�=1

pot−use�(σ, g, h) & (∀i∈{1, . . . , n} ¬useful�,i(σ, g, h))

⎤⎦ . (7.11)

Consider a specific 
 ∈ {1, . . . , tS(n)} so that pot−use�(σ, g, h) is satisfied (i.e.,
the 
th block prefix in execx(σ, g, h) is potentially useful). By Condition 2
in the definition of a potentially useful block prefix (Definition 7.3.8), the
execution of the simulator reaches the end of the corresponding block in the
schedule. In other words, there exists a query q ∈ execx(σ, g, h) that ends
with the (k + 1)st prover message in the nth main session of recursive block
number 
(bp�), where bp� denotes the 
th distinct block prefix in execx(σ, g, h),
and 
(bp�) denotes the index of the recursive block that corresponds to block
prefix bp� in execx(σ, g, h). Since, by our convention and the modification of
the simulator, S never generates a query that is answered with a DEVIATION
message, we have that the partial execution transcript induced by query q

must contain the accepting conversations of at least n1/2

4 main sessions in
block number 
(bp�) (as otherwise query q would have been answered with the
DEVIATION message in Step 1′ of Vg,h).

Let q(bp�) = q(bp�)(σ, g, h) denote the first query in execx(σ, g, h) that is
as above (i.e., that ends with the (k + 1)st prover message in the nth main
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session of recursive block number 
(bp�), where bp� denotes the dth block prefix
appearing in execx(σ, g, h)).26

Define an additional Boolean indicator accept�,i(σ, g, h) to be true if and

only if query q(bp�) contains an accepting conversation for session (
(bp�), i)
(that is, no prover message in session (
(bp�), i) is answered with ABORT, and
the last verifier message of this session equals ACCEPT).27 It follows that for
every 
 ∈ {1, . . . , tS(n)} that satisfies pot−use�(σ, g, h), there must exist a set
S ⊂ {1, . . . , n} of size n1/2

4 such that accept�,i(σ, g, h) holds for every i ∈ S.
For simplicity, rewrite pot−use�(σ, g, h), useful�,i(σ, g, h), accept�,i(σ, g, h)

as pot−use�(g), useful�,i(g) and accept�,i(g) (notice that σ, h are fixed anyway
at this point). We thus get that (7.11) is upper bounded by:

Prg

⎡⎢⎢⎢⎣
tS(n)∨
�=1

∨
S⊂{1,...,n}
|S|= n1/2

4

(
pot−use�(g) &

(
∀i ∈ S, ¬useful�,i(g) & accept�,i(g)

))
⎤⎥⎥⎥⎦ .

(7.12)
Using the union bound, we upper bound (7.12) by:

tS(n)∑
�=1

∑
S⊂{1,...,n}
|S|= n1/2

4

Prg

[
pot−use�(g) &

(
∀i ∈ S, ¬useful�,i(g) & accept�,i(g)

) ]
.

(7.13)
The last expression is upper bounded using the following lemma, that bounds
the probability that a specific set of different sessions corresponding to the
same (in index) potentially useful block prefix are accepted (at the first time
that the recursive block to which they belong is completed), but still do not
turn it into a useful block prefix.

26Since the simulator is allowed to feed Vg,h with different queries of the same
length, we have that the execution of the simulator may reach the end of the cor-
responding block more than once (and thus, execx(σ, g, h) may contain more than
a single query that ends with the (k+1)st prover message in the nth main session

of block number 
(bp�)). Since each time that the simulator reaches the end of the
corresponding block, the above set of accepted sessions may be different, we are not
able to pinpoint a specific set of accepted sessions without explicitly specifying to
which one of the above queries we are referring. We solve this problem by explicitly
referring to the first query that satisfies the above conditions (note that, in our case,
such a query is always guaranteed to exist).

27Note that the second condition implies the first one. Namely, if the last verifier

message of session (
(bp�), i) equals ACCEPT, then no prover message in this session
could have been answered with ABORT.
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Lemma 7.3.18 For every 
 ∈ {1, . . . , tS(n)}, and every S ⊂ {1, . . . , n}, so
that |S| > k:

Prg

[
pot−use�(g) &

(
∀i ∈ S, ¬useful�,i(g) & accept�,i(g)

)]
<

(
n−( 1

2+ 1
4k )

)|S|
.

Proof Let x ∈ {0, 1}∗. Fix some 
 ∈ {1, . . . , tS(n)} and a set S ⊂ {1, . . . , n}.
Denote by bp� = bp�(g) the 
th distinct block prefix in execx(σ, h, g), and by

(bp�) the index of its corresponding recursive block in the schedule. Recall
that σ ∈ {0, 1}∗ and h ∈ H are fixed.

We bound the probability, taken over the choice of g
r←G, that for all i ∈ S

block prefix bp� is not i-useful, even though it is potentially useful and for all
i ∈ S the query q(bp�) contains an accepting conversation for session (
(bp�), i).

A Technical Problem Resolved. In order to prove Lemma 7.3.18 we need
to focus on the 
th distinct block prefix in execx(σ, h, g) (denoted by bp�)
and analyze the behavior of a uniformly chosen g when applied to the var-
ious iteration prefixes that correspond to bp�. However, trying to do so we
encounter a technical problem. This problem is caused by the fact that the
contents of block prefix bp� depends on g.28 In particular, it does not make
sense to analyze the behavior of a uniformly chosen g on iteration prefixes
that correspond to an “undetermined” block prefix (since it is not possible
to determine the iteration prefixes that correspond to bp� when bp� itself is
not determined). To overcome the above problem, we rely on the following
observations:

1. Whenever σ, h and 
 are fixed, the contents of block prefix bp� is completely
determined by the output of g on inputs that have occurred before bp� has
been reached (i.e., has appeared as a block prefix of some query) for the
first time.

2. All iteration prefixes that correspond to block prefix bp� occur after bp�

has been reached for the first time.

It is thus possible to carry out the analysis by considering the output of g only
on inputs that have occurred after bp� has been determined. That is, fixing σ, h
and 
 we distinguish between: (a) the outputs of g that have occurred before
the 
th distinct block prefix in execx(σ, g, h) (i.e., bp�) has been reached,
and (b) the outputs of g that have occurred after bp� has been reached. For
every possible outcome of (a) we will analyze the (probabilistic) behavior of
g only over the outcomes of (b). (Recall that once (a)’s outcome has been
determined, the identities (but not the contents) of all relevant prefixes are

28Clearly, the contents of queries that appear in execx(σ, g, h) may depend on the
choice of the hash function g. (This is because the simulator may dynamically adapt
its queries depending on the outcome of g on iteration prefixes of past queries.) As
a consequence, the contents of bp� = bp�(g) may vary together with the choice of g.
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well defined.) Since for every possible outcome of (a) the analysis will hold, it
will in particular hold over all choices of g.

More formally, consider the following (alternative) way of describing a
uniformly chosen g ∈ G (at least as far as execx(σ, g, h) is concerned). Let
g1, g2 be two tS(n)-wise independent hash functions uniformly chosen from G
and let σ, h, 
 be as above. We define g(g1,g2) = g(σ,h,�,g1,g2) to be uniformly
distributed among the functions g′ that satisfy the following conditions: the
value of g′ when applied to an input α that has occurred before bp� has been
reached (in execx(σ, g, h)) is equal to g1(α), whereas the value of g′ when
applied to an input α that has occurred after bp� has been reached is equal to
g2(α).

Similarly to the proof of Claim 7.3.2 it can be shown that for every σ, h, 
 as
above, if g1 and g2 are uniformly distributed then so is g(g1,g2). In particular:

Prg

[
pot−use�(g) &

(
∀i ∈ S, ¬useful�,i(g) & accept�,i(g)

)]
equals

Prg1,g2

[
pot−use�(g

(g1,g2)) &
(
∀i∈ S,¬useful�,i(g(g1,g2)) & accept�,i(g

(g1,g2))
)]

.

By fixing g1 and then analyzing the behavior of a uniformly chosen g2 on
the relevant iteration prefixes the above technical problem is resolved. This
is due to the following two reasons: (1) For every choice of σ, h, 
 and for
every fixed value of g1, the block prefix bp� is completely determined (and
the corresponding iteration prefixes are well defined). (2) Once bp� has been
reached, the outcome of g(g1,g2) when applied to the relevant iteration prefixes
is completely determined by the choice of g2. Thus, all we need to show to
prove Lemma 7.3.18 is that for every choice of g1

Prg2

[
pot−use�(g

(g1,g2)) &
(
∀i ∈ S, ¬useful�,i(g(g1,g2)) & accept�,i(g

(g1,g2))
)]

(7.14)
is upper bounded by (n−(1/2+1/4k))|S|.

Back to the Actual Proof of Lemma 7.3.18. Consider the block prefix
bp�, as determined by the choices of σ, h, 
 and g1, and focus on the iteration
prefixes that correspond to bp� in execx(σ, g, h). We next analyze the impli-
cations of bp� being not i-useful, even though it is potentially useful and for
all i ∈ S query q(bp�) contains an accepting conversation for session (
(bp�), i).

Claim 7.3.19 Let σ ∈ {0, 1}∗, g ∈ G, h ∈ H, d ∈ {1, . . . , tS(n)} and S ⊂
{1, . . . , n}. Suppose that the indicator

pot−use�(σ, g, h) &
(
∀i ∈ S,¬useful�,i(σ, g, h) & accept�,i(σ, g, h)

)
is true. Then:

1. The number of different iteration prefixes that correspond to block prefix
bp� is at most kc+1.
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2. For every j∈{2, . . . , k+1}, there exists an iteration prefix ipj (correspond-
ing to block prefix bp�), so that for every i ∈ S we have g(i, ipj) = 1.

3. For every i ∈ S, there exists an (additional) iteration prefix ip
(i)

(corre-
sponding to block prefix bp�), so that for every j∈{2, . . . , k + 1}, we have
ip

(i) �= ipj, and g(i, ip
(i)

) = 1.

In accordance with the discussion above, Claim 7.3.19 will be invoked with
g = g(g1,g2).

Proof Loosely speaking, item (1) follows directly from the hypothesis that
block prefix bp� is potentially useful. In order to prove item (2) we also use the
hypothesis that for all i ∈ S query q(bp�) contains an accepting conversation
for session (
(bp�), i), and in order to prove Item (3) we additionally use the
hypothesis that for all i ∈ S block prefix bp� is not i-useful. Details follow.

Proof of Item 1. The hypothesis that block prefix bp� is potentially useful
(i.e., pot−use�(σ, g, h) holds), implies that the number of iteration prefixes that
correspond to block prefix bp� is at most kc+1 (as otherwise, the number of
ip-different queries that correspond to bp� would have been greater than kc+1).

Proof of Item 2. Let i ∈ S and recall that accept�,i(σ, g, h) holds. In partic-

ular, we have that query q(bp�) (i.e., the first query in execx(σ, g, h) that ends
with the (k + 1)st prover message in the nth main session of recursive block
number 
(bp�)) contains an accepting conversation for session (
(bp�), i). That
is, no prover message in session (
(bp�), i) is answered with ABORT, and the
last verifier message of this session equals ACCEPT. Since by our conventions
regarding the simulator, before making query q(bp�) the simulator has made
queries to all relevant prefixes, then it must be the case that all prefixes of
query q(bp�) have previously occurred as queries in execx(σ, g, h). In partic-
ular, for every i ∈ S and for every j ∈ {2, . . . , k + 1}, the execution of the
simulator must contain a query qi,j that is a prefix of q(bp�) and that satisfies

bp(qi,j) = bp�, πsn(qi,j) = (
(bp�), i), πmsg(qi,j) = j, and g(i, ip(qi,j)) = 1. (If

g(i, ip(qi,j)) would have been equal to 0, query q(bp�) would have contained a

prover message in session (
(bp�), i) that is answered with ABORT, in contradic-
tion to the fact that accept�,i(σ, g, h) holds.) Since for every j ∈ {2, . . . , k +1}
and for every i1, i2 ∈ S we have that ip(qi1,j) = ip(qi2,j) (as queries qi,j are all
prefixes of q� and |ip(qi1,j)| = |ip(qi2,j)|), we can set ipj = ip(qi,j). It follows
that for every j ∈ {2, . . . , k + 1}, iteration prefix ipj corresponds to block
prefix bp� (as queries qi,j all have block prefix bp�), and for every i ∈ S we
have that g(i, ipj) = 1.

Proof of Item 3. Let i ∈ S and recall that in addition to the fact that
accept�,i(σ, g, h) holds, we have that useful�,i(σ, g, h) does not hold. Notice
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that the only reason for which useful�,i(σ, g, h) can be false (i.e., the 
th

block prefix is not i-useful), is that Condition 1 in Definition 7.3.4 is vi-
olated by execx(σ, g, h). (Recall that accept�,i(σ, g, h) holds, and so Condi-
tion 2 in Definition 7.3.4 is indeed satisfied by query qi,k+1 (as defined above):

This query corresponds to block prefix bp�, satisfies πsn(qi,k+1) = (
(bp�), i),
πmsg(qi,k+1) = k + 1, g(i, ip(qi,k+1)) = 1, and is answered with ACCEPT.)

For Condition 1 in Definition 7.3.4 to be violated, there must exist a j ∈
{2, . . . , k+1}, with two ip-different queries, q1 and q2, that correspond to block
prefix bp�, satisfy πsn(q1)=πsn(q2)= (
(bp�), i), πmsg(q1) = πmsg(q2) = j, and
g(i, ip(q1)) = g(i, ip(q2)) = 1. Since, by definition, two queries are considered
ip-different only if they differ in their iteration prefixes, we have that there
exist two different iteration prefixes ip(q1) and ip(q2) (of the same length) that
correspond to block prefix bp� and satisfy g(i, ip(q1)) = g(i, ip(q2)) = 1. Since
iteration prefixes ip2, . . . , ipk+1 (from Item 2 above) are all of distinct length,
and since the only iteration prefix in ip2, . . . , ipk+1 that can be equal to either
ip(q1) or ip(q2) is ipj (note that this is the only iteration prefix having the
same length as ip(q1) and ip(q2)), then it must be the case that at least one
of ip(q1), ip(q2) is different from all of ip2, . . . , ipk+1 (recall that ip(q1) and
ip(q2) are different, which means that they cannot be both equal to ipj). In
particular, for every i ∈ S (that satisfies useful�,i(σ, g, h) & accept�,i(σ, g, h)),

there exists at least one (extra) iteration prefix, ip
(i) ∈ {ip(q1), ip(q2)}, that

corresponds to block prefix bp�, differs from ipj for every j ∈ {2, . . . , k + 1},
and satisfies g2(i, ip

(i)
) = 1.

This completes the proof of Claim 7.3.19.

Recall that the hash function g2 is chosen at random from a tS(n)-wise inde-
pendent family. Since for every pair of different iteration prefixes the function
g2 will have different inputs, then g2 will have independent outputs when
applied to different iteration prefixes (since no more than tS(n) queries are
made by the simulator). Similarly, for every pair of different i, i′ ∈ S, g2 will
have different input, and thus independent output. Put in other words, all out-
comes of g2 that are relevant to block prefix bp� are independent of each other.
Since a uniformly chosen g2 will output 1 with probability n−1/2k, we may
view every application of g2 on iteration prefixes that correspond to bp� as an
independently executed experiment that succeeds with probability n−1/2k.29

Using Claim 7.3.19.1 (i.e., Item 1 of Claim 7.3.19), the applications of g2

which are relevant to sessions {(
(bp�), i)}i∈S can be viewed as a sequence of at

29We may describe the process of picking g2
r←G as the process of independently

letting the output of g2 be equal to 1 with probability n−1/2k (each time a new input
is introduced). Note that we will be doing so only for inputs that occur after block
prefix bp� has been determined (as, in the above case, all inputs for g2 are iteration
prefixes that correspond to block prefix bp�, and such iteration prefixes will occur
only after bp� has already been determined).
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most kc+1 experiments (corresponding to at most kc+1 different iteration pre-
fixes). Each of these experiments consists of |S| independent sub-experiments
(corresponding to the different i ∈ S), and each sub-experiment succeeds
with probability n−1/2k. Claim 7.3.19.2 now implies that at least k of the
above experiments will fully succeed (that is, all of their sub-experiments will
succeed), while Claim 7.3.19.3 implies that for every i ∈ S there exists an
additional successful sub-experiment (that is, a sub-experiment of one of the
kc+1 − k remaining experiments). Using the fact that the probability that a
sub-experiment succeeds is n−1/2k, we infer that the probability that an ex-
periment fully succeeds is equal to (n−1/2k)|S|. In particular, the probability
in (7.14) is upper bounded by the probability that the following two events
occur (these events correspond to Claims 7.3.19.2 and 7.3.19.3, respectively):

Event 1: In a sequence of (at most kc+1) experiments, each succeeding with
probability (n−1/2k)|S|, there exist k successful experiments. (The success
probability corresponds to the probability that for every i ∈ S, we have
g2(i, ipj) = 1 (see Claim 7.3.19.2).)

Event 2: For every one out of |S| sequences of the remaining (at most
kc+1−k) subexperiments, each succeeding with probability n−1/2k, there
exists at least one successful experiment. (In this case, the success prob-
ability corresponds to the probability that iteration prefix ip

(i)
satisfies

g2(i, ip
(i)

)=1 (see Claim 7.3.19.3).)

For i ∈ |S| and j ∈ [kc+1], denote the success of the ith sub-experiment in the
jth experiment by χi,j . By the above discussion for every i, j, the probability
that χi,j holds is n−1/2k (independently of other χi,j ’s). So for Event 1 above
to succeed, there must exist a set of k experiments, K ⊆ [kc+1], so that for
all (i, j) ∈ S ×K, the event χi,j holds. For Event 2 to succeed, it must be the
case that, for every i ∈ S, there exists one additional experiment (i.e., some
j ∈ [kc+1] \ K) so that χi,j holds. It follows that (7.14) is upper bounded by:

∑
K⊆[kc+1]

|K|=k

Pr
[
∀j ∈ K, ∀i ∈ S s.t. χi,j

]
· Pr

[
∀i ∈ S, ∃j ∈ [kc+1] \ K s.t. χi,j

]

=
(

kc+1

k

)
·
((

n− 1
2k

)|S|)k

·
(

1 −
(
1 − n− 1

2k

)kc+1−k
)|S|

<
(
kc+1

)k ·
((

n− 1
2k

)|S|)k

·
(
kc+1 · n− 1

2k

)|S|
(7.15)

=
(
kc+1

)k+|S| ·
(
n− 1

2k

)k·|S|+|S|

=
(
kc+1

)k+|S| ·
(
n− 1

4k

)|S| (
n−( 1

2+ 1
4k )

)|S|

<
(
n−( 1

2+ 1
4k )

)|S|
(7.16)
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where (7.15) holds whenever kc+1 − k = o(n1/2k) (which is satisfied if k =
o( log n

log log n )), and (7.16) holds whenever (kc+1)k+|S| · (n−1/4k)|S| < 1 (which is
satisfied if both |S| > k and k = o( log n

log log n )). This means that (7.14) is upper
bounded by (n−(1/2+1/4k))|S|. The proof of Lemma 7.3.18 is complete.
Using Lemma 7.3.18, we upper bound (7.13) by

tS(n) ·
(

n
n1/2

4

)
·
(
n−( 1

2+ 1
4k )

)n1/2
4

< tS(n) ·
(

4 · e · n
n1/2

)n1/2
4

·
(
n−( 1

2+ 1
4k )

)n1/2
4

= tS(n) ·
(

4 · e
n1/4k

)n1/2
4

< tS(n) · 2−n1/2
4 (7.17)

where (7.17) holds whenever 8·e < n1/4k (which holds for k < log n
4·(3+log e) ). This

completes the proof of Lemma 7.3.7 (since poly(n) · 2−Ω(n1/2) is negligible).
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Conclusions and Open Problems

8.1 Avoiding the Lower Bounds of Chapter 7

The lower bound presented in Chap. 7 draws severe limitations on the ability
of black-box simulators to cope with the standard concurrent zero-knowledge
setting. This suggests two main directions for further research in the area.

Alternative Models. One first possibility that comes into mind would be
to consider relaxations of and augmentations to the standard model. Indeed,
several works have managed to “bypass” the difficulty in constructing concur-
rent zero-knowledge protocols by modifying the standard model in a number
of ways. Dwork, Naor and Sahai augment the communication model with as-
sumptions on the maximum delay of messages and skews of local clocks of
parties [39, 41]. Damg̊ard uses a common reference string [34], and Canetti et
al. use a public registry file [28].

A different approach would be to try and achieve security properties that
are weaker than zero-knowledge but are still useful. For example, Feige and
Shamir consider the notion of witness indistinguishability [42, 48], which is
preserved under concurrent composition.

Beyond Black-Box Simulation. Loosely speaking, the only advantage
that a black-box simulator may have over the honest prover is the ability
to “rewind” the interaction and explore different execution paths before pro-
ceeding with the simulation (as its access to the verifier’s strategy is restricted
to the examination of input/output behavior). As we show in Chap. 7, such
a mode of operation (i.e., the necessity to rewind every session) is a major
contributor to the hardness of simulating many concurrent sessions. It is thus
natural to think that a simulator that deviates from this paradigm (i.e., is
non-black-box, in the sense that is does not have to rewind the adversary in
order to obtain a faithful simulation of the conversation), would essentially
bypass the main problem that arises while trying to simulate many concurrent
sessions.
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Hada and Tanaka [75] have considered some weaker variants of zero-
knowledge, and exhibited a three-round protocol for NP (whereas only BPP
has three-round block-box zero-knowledge [63]). Their protocol was an exam-
ple for a zero-knowledge protocol not proven secure via black-box simulation.
However, their analysis was based in an essential way on a strong and highly
non-standard hardness assumption.

As mentioned before, Barak [8] constructs a constant-round protocol for all
languages in NP whose zero-knowledge property is proved using a non black-
box simulator. It should be noted, however, that Barak’s new techniques are
still not known to yield a satisfactory solution to the problem of “full-fledged”
concurrent composition (even when allowing arbitrarily many rounds in the
protocol).

8.2 Open Problems

The main conclusion from the results presented in this book is that the round-
complexity of black-box cZK is essentially logarithmic. Specifically, by com-
bining Theorem 7.1 with Theorem 5.1, we have:

Corollary The round-complexity of black-box concurrent zero-knowledge is
Θ̃(log n) rounds.1

Still, in light of Barak’s recent result [8], constant-round cZK protocols (with
non-black-box simulators) do not seem out of reach. A natural open question
is whether there exists a constant-round (non black-box) cZK protocol for all
languages in NP.

Open Problem 1 Is there a cZK protocol for NP with a constant number
of rounds?

As a first step, it would be interesting to determine whether non-black-box
simulation techniques can at all improve over black-box simulation techniques
in the context of concurrent composition.

Open Problem 2 Is there a cZK protocol for NP with a sublogarithmic
number of rounds?

It would be in fact interesting to see whether Barak’s non-black-box simu-
lation techniques can at all be extended to handle unbounded concurrency
(regardless of the number of rounds).

The lower bound presented in Chap. 7 heavily relies on the fact that the
malicious verifier is allowed to prematurely abort the interaction with some
(predetermined) probability. A natural scenario to be considered is one in

1f(n) = Θ̃(h(n)) if both f(n) = Õ(h(n)) and f(n) = Ω̃(h(n)). f(n) = Õ(h(n))
(resp. f(n) = Ω̃(h(n))) if there exist constants c1, c2 > 0 so that for all sufficiently
large n, f(n) ≤ c1 · h(n)/(log h(n))c2 (resp. f(n) ≥ c1 · h(n)/(log h(n))c2).
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which the verifier never aborts the interaction. That is, the simulator is re-
quired to succeed in its task only for verifiers that do not deviate from the pre-
scribed strategy in a detectable manner (see [96], Chap. 5 for a more detailed
treatment of non aborting verifiers). We note that in the case of non-aborting
verifiers the situation is far from being resolved. In particular, assuming that
the verifier never aborts is not known to enable any improvement in the round-
complexity of cZK protocols. On the other hand, the best lower bound to date
shows that 7 rounds are not sufficient for black-box simulation [97]. It would
be interesting to close the gap between the currently known upper and lower
bounds (where the best known upper bound is the one presented in Chap. 5
of this book).

Open Problem 3 Determine the exact round-complexity of cZK without
aborts.

The latter question mainly refers to black-box simulation, though it is also
interesting (and open) in the context of non-black-box simulation. In fact, we
feel that investigation of the above question is likely to shed light on the issue
of non-black-box simulation in the concurrent setting.



9

A Brief Account of Other Developments
(by Oded Goldreich)

As noted in Chap. 1, zero-knowledge proofs are typically used to force ma-
licious parties to behave according to a predetermined protocol. This gen-
eral principle, which is based on the fact that zero-knowledge proofs can be
constructed for any NP-set, has been utilized in numerous different settings.
Indeed, this general principle is the basis for the wide applicability of zero-
knowledge protocols in cryptography. In particular, zero-knowledge proofs of
various types were explicitly used (as a tool) in a variety of applications. In
addition to their direct applicability in cryptography, zero-knowledge proto-
cols serve as a good benchmark for the study of various problems regarding
cryptographic protocols (see below). Thus, zero-knowledge protocols have had
a vast impact on the development of cryptography.

In view of the above, it is not surprising that zero-knowledge protocols have
attracted a lot of attention in the last two decades (following their introduc-
tion). The study of zero-knowledge protocols has taken numerous directions,
ranging from the abstract study of their general properties, through the in-
troduction of various variants of zero-knowledge proofs, to the developement
of methods for constructing zero-knowledge protocols. In this chapter we at-
tempt to provide a brief account of these directions, while certainly neglecting
to even mention many important works.

We start by considering two basic problems regarding zero-knowledge,
which actually arise also with respect to the security of other cryptographic
primitives. Specifically, we consider the “preservation of security under vari-
ous forms of protocol composition” and the “use of of the adversary’s program
within the proof of security”. The first question, as applied to the preservation
of zero-knowledge under various types of composition operations, is discussed
in Sect. 1.4. Recall that the main facts regarding this question are:

• Zero-knowledge (with respect to auxiliary inputs) is closed under sequen-
tial composition.

• In general, zero-knowledge is not closed under parallel composition. Yet,
some zero-knowledge proofs (for NP) preserve their security when many
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copies are executed in parallel. Furthermore, some of these protocols use a
constant number of rounds, and this result extends to a restricted notion
of concurrent executions (cf. the timing model).

• Some zero-knowledge proofs (for NP) preserve their security when many
copies are executed concurrently, but such a result is not known for
constant-round protocols. (Recall that most of this book is devoted to the
study of the round-complexity of concurrent zero-knowledge protocols.)

The second basic question regarding zero-knowledge refers to the usage of the
adversary’s program within the proof of security (i.e., demonstration of the
zero-knowledge property). For 15 years, all known proofs of security used the
adversary’s program as a black-box (i.e., a universal simulator was presented
using the adversary’s program as an oracle). Furthermore, it was believed that
there is no advantage in having access to the code of the adversary’s program.
Consequently it was conjectured that negative results regarding black-box
simulation represent an inherent limitation of zero-knowledge. This believe
has been refuted recently by the presentation of a zero-knowledge argument
(for NP) that has important properties that are unachievable by black-box
simulation. For example, this zero-knowledge argument uses a constant num-
ber of rounds and preserves its security when an (a priori fixed polynomial)
number of copies are executed concurrently.1

The aforementioned zero-knowledge argument, developed by Barak [8],
makes crucial use of a technique introduced by Feige, Lapidot and Shamir [46],
which in turn is based on the notion of witness indistinguishability (intro-
duced by Feige and Shamir [47]). This technique, hereafter referred to as the
FLS technique, has been used in several other sophisticated constructions of
zero-knowledge protocols and is briefly surveyed in this chapter. Other topics
treated in this chapter include

• Proofs of knowledge: This is a related fascinating notion of vast applica-
bility (especially in the case of zero-knowledge proof of knowledge).

• Non-interactive zero-knowledge proofs: This model assumes also the exis-
tence of a random (reference) string, and yet retains the zero-knowledge
flavor and makes it available to non-interactive applications (e.g., public-
key encryption schemes).

• Statistical zero-knowledge proofs: Here the zero-knowledge condition is
stronger, and the resulting proof is “secure” also in an information theo-
retic sense.

Finally, we mention the indirect impact of zero-knowledge on the definitional
approach underlying the foundations of cryptography (cf. Sect. 1.2.1). In ad-
dition, zero-knowledge has served as a source of inspiration for complexity

1 This result falls short of achieving a fully concurrent zero-knowledge argument,
because the number of concurrent copies must be fixed before the protocol is pre-
sented. Specifically, the protocol uses messages that are longer than the allowed
number of concurrent copies.
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theory. In particular, it served as the main motivation towards the intro-
duction of interactive proof systems [72] and multi-prover interactive proof
systems [17].

Organization of This Chapter. The use of the adversary’s program within
the proof of security is discussed in Sect. 9.1. In Sect. 9.2, we briefly sur-
vey the FLS technique (as well as the underlying notion of witness indistin-
guishability). Other topics treated in this chapter include proofs of knowledge
(Sect. 9.3), non-interactive zero-knowledge proofs (Sect. 9.4), statistical zero-
knowledge (Sect. 9.5), resettability of a party’s random-tape (Sect. 9.6), and
zero-knowledge in other models (Sect. 9.7).

Suggestions for Further Reading. For further details regarding the ma-
terial presented in Sects. 9.2–9.4, the reader is referred to [57, Chap. 4]. For
further details regarding Sect. 9.5, the reader is referred to [101]. For the rest,
unless suggested differently, the reader is referred to the original papers.

9.1 Using the Adversary’s Program in the Proof of
Security

As discussed in Chapter 1, zero-knowledge is defined by following the sim-
ulation paradigm, which in turn underlies many other central definitions in
cryptography. Recall that the definition of zero-knowledge proofs states that
whatever an efficient adversary can compute after interacting with the prover
can actually be efficiently computed from scratch by a so-called simulator
(which works without interacting with the prover). Although the simulator
may depend arbitrarily on the adversary, the need to present a simulator for
each feasible adversary seems to require the presentation of a universal simu-
lator that is given the adversary’s strategy (or program) as another auxiliary
input. The question addressed in this section is how can the universal simu-
lator use the adversary’s program.

The adversary’s program (or strategy) is actually a function determining
for each possible view of the adversary (i.e., its input, random choices and
the message it has received so far) which message will be sent next. Thus, we
identify the adversary’s program with this next-message function. As stated in
Sect. 1.2.3, until very recently, all universal simulators (constructed towards
demonstrating zero-knowledge properties) used the adversary’s program (or
rather its next-message function) as a black-box (i.e., the simulator invoked
the next-message function on a sequence of arguments of its choice). Further-
more, in view of the presumed difficulty of “reverse engineering” programs, it
was commonly believed that nothing is lost by restricting attention to simu-
lators, called black-box simulators, that only make black-box usage of the ad-
versary’s program. Consequently, Goldreich and Krawczyk conjectured that
impossibility results regarding black-box simulation represent inherent limi-
tations of zero-knowledge itself, and studied the limitations of the former [62].
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In particular, they showed that parallel composition of the protocol of
Fig. 1.2 (as well as of any constant-round public-coin protocol) cannot
be proven to be zero-knowledge using a black-box simulator, unless the
language (i.e., 3-colorability) is in BPP. In fact their result refers
to any constant-round public-coin protocol with negligible soundness
error, regardless of how such a protocol is obtained. This result was
taken as strong evidence towards the conjecture that constant-round
public-coin protocol with negligible soundness error cannot be zero-
knowledge (unless the language is in BPP).
Similarly, as mentioned in Sect. 1.4.3, it was shown that protocols of
sublogarithmic number of rounds cannot be proven to be concurrent
zero-knowledge via a black-box simulator [30], and this was taken as
evidence towards the conjecture that such protocols cannot be con-
current zero-knowledge.

In contrast to these conjectures and supportive evidence, Barak showed how
to construct non-black-box simulators and obtained several results that were
known to be unachievable via black-box simulators [8]. In particular, under a
standard intractability assumption (see also [10]), he presented constant-round
public-coin zero-knowledge arguments with negligible soundness error for any
language in NP. (Moreover, the simulator runs in strict polynomial-time,
which is impossible for black-box simulators of non-trivial constant-round
protocols [12].) Furthermore, this protocol preserves zero-knowledge under a
fixed2 polynomial number of concurrent executions, in contrast to the result
of [30] (regarding black-box simulators) that holds also in that restricted case.
Thus, Barak’s result calls for the re-evaluation of many common beliefs. Most
concretely, it says that results regarding black-box simulators do not reflect
inherent limitations of zero-knowledge (but rather an inherent limitation of a
natural way of demonstrating the zero-knowledge property). Most abstractly,
it says that there are meaningful ways of using a program other than merely
invoking it as a black-box.

Does this means that a method was found to “reverse engineer” programs
or to “understand” them? We believe that the answer is negative. Barak [8]
is using the adversary’s program in a significant way (i.e., more significant
than just invoking it), without “understanding” it. So how does he use the
program?

The key idea underlying Barak’s protocol [8] is to have the prover prove
that either the original NP-assertion is valid or that he (i.e., the prover)
“knows the verifier’s residual strategy” (in the sense that it can predict the
next verifier message). Indeed, in a real interaction (with the honest veri-
fier), it is infeasible for the prover to predict the next verifier message, and so

2 The protocol depends on the polynomial bounding the number of executions,
and thus is not known to be concurrent zero-knowledge (because the latter requires
to fix the protocol and then consider any polynomial number of concurrent execu-
tions).
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computational soundness of the protocol follows. However, a simulator that
is given the code of the verifier’s strategy (and not merely oracle access to
that code) can produce a valid proof of the disjunction by properly executing
the subprotocol using its knowledge of an NP-witness for the second disjunc-
tive. The simulation is computational indistinguishable from the real execu-
tion, provided that one cannot distinguish an execution of the subprotocol in
which one NP-witness (i.e., an NP-witness for the original assertion) is used
from an execution in which the second NP-witness (i.e., an NP-witness for
the auxiliary assertion) is used. That is, the subprotocol should be a witness-
indistinguishable argument system (see Sect. 9.2 for further discussion). We
warn the reader that the actual implementation of the above idea requires
overcoming several technical difficulties (cf. [8, 10]).

Perspective. In retrospect, taking a wide perspective, it should not come as
a surprise that the program’s code yields extra power beyond black-box access
to it. Feeding a program with its own code (or part of it) is the essence of the
diagonalization technique, and this too is done without “reverse engineering”.
Furthermore, various non-black-box techniques have appeared before in the
cryptographic setting, but they were used in the more natural context of
devising an attack on an (artificial) insecure scheme (e.g., towards proving
the failure of the “random oracle methodology” [29] and the impossibility
of software obfuscation [11]). In contrast, in [8] (and [9]) the code of the
adversary is being used within a sophisticated proof of security. What we
wish to highlight here is that non-black-box usage of programs is relevant also
to proving (rather than to disproving) the security of systems.

9.2 Witness Indistinguishability and the FLS-Technique

The description of [8] provided in Sect. 9.1, as well as several other sophisti-
cated constructions of zero-knowledge protocols (e.g., [46, 94]), makes crucial
use of a technique introduced by Feige, Lapidot and Shamir [46], which we
briefly survey below. This technique is based on the notion of witness indis-
tinguishability, introduced by Feige and Shamir [47] (cf. [57, Sect. 4.6]) and
briefly described next.

Witness Indistinguishability. Let R be any NP-relation and LR denote
the corresponding language. An argument system for LR is called witness in-
distinguishable if no feasible verifier may distinguish the case in which the
(prescribed) prover uses one NP-witness to x (i.e., w1 such that (x, w1) ∈ R)
from the case where this prover is using a different NP-witness to the same
input x (i.e., w2 such that (x,w2) ∈ R). Indeed, witness indistinguishability
is interesting mainly when applied to prescribed provers that can be imple-
mented in polynomial-time (when given a corresponding NP-witness as an
auxiliary input). Thus, we adopt the common convention of confining the
discussion to such prescribed provers.
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Any zero-knowledge protocol is witness indistinguishable, but the converse
does not necessarily hold. Furthermore, it seems that witness-indistinguishable
protocols are easier to construct than zero-knowledge ones. In particular,
witness-indistinguishable protocols are closed under parallel (and even concur-
rent) composition [47], and so constant-round witness-indistinguishable pro-
tocols of negligible soundness error can be obtained by parallel composition
of corresponding protocols (of, say, constant soundness error). (Recall that,
in general, zero-knowledge is not preserved under parallel composition and so
the aforementioned methodology cannot be applied in that context.)

The FLS Technique. Following is a sketchy description of a special case of
the FLS technique, whereas the application in Sect. 9.1 uses a more general
version (which refers to proofs of knowledge, as defined in Sect. 9.3).3 In
this special case, the technique consists of the following construction schema,
which uses witness-indistinguishable protocols for NP in order to obtain zero-
knowledge protocols for NP. On common input x ∈ L, where L = LR is
the NP-set defined by the witness relation R, the following two steps are
performed:

1. The parties generate an instance x′ for an auxiliary NP-set L′, where L′

is defined by a witness relation R′. The generation protocol in use must
satisfy the following two conditions:
a) If the verifier follows its prescribed strategy then no matter which

feasible strategy is used by the prover, with high probability, the pro-
tocol’s outcome is a no-instance of L′.

b) Loosely speaking, there exists an efficient (non-interactive) procedure
for producing a (random) transcript of the generation protocol along
with an NP-witness for the corresponding outcome such that the pro-
duced transcript is computationally indistinguishable from the tran-
script of a real execution of the protocol.

2. The parties execute a witness-indistinguishable protocol for the set L′′ de-
fined by the witness relation R′′ = {((α, α′), (β, β′)) : (α, β)∈R∨(α′, β′)∈
R′}. The subprotocol is such that the corresponding prover can be
implemented in probabilistic polynomial-time given an NP-witness for
(α, α′) ∈ L′′. The subprotocol is invoked on common input (x, x′), where
x′ is the outcome of Step 1, and the subprover is invoked with the corre-
sponding NP-witness as auxiliary input (i.e., with (w, λ), where w is the
NP-witness for x given to the main prover).

The computational-soundness of the above protocol follows from Property (a)
of the generation protocol (i.e., with high probability x′ �∈ L′, and so x ∈ L

3 In the general case, the generation protocol may generate an instance x′ in L′,
but it is infeasible for the prover to obtain a corresponding witness (i.e., a w′ such
that (x′, w′) ∈ R′). In the second step, the subprotocol in use ought to be a proof of
knowledge, and computational soundness of the main protocol will follow (because
otherwise the prover, using a knowledge extractor, can obtain a witness for x′ ∈ L′).
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follows from the soundness of the protocol used in Step 2). To demonstrate
the zero-knowledge property, we first generate a simulated transcript of Step 1
(with outcome x′ ∈ L′) along with an adequate NP-witness (i.e., w′ such that
(x′, w′) ∈ L′), and then emulate Step 2 by feeding the subprover strategy with
the NP-witness (λ, w′). Combining Property (b) of the generation protocol and
the witness indistinguishability property of the protocol used in Step 2, the
simulation is indistinguishable from the real execution.

9.3 Proofs of Knowledge

This section addresses the concept of “proofs of knowledge”. Loosely speaking,
these are proofs in which the prover asserts “knowledge” of some object (e.g.,
a 3-coloring of a graph), and not merely its existence (e.g., the existence of a
3-coloring of the graph, which in turn implies that the graph is 3-colorable).
But what is meant by saying that a machine knows something? Indeed the
main thrust of this section is in addressing this question. Before doing so we
point out that proofs of knowledge, and in particular zero-knowledge proofs
of knowledge, have many applications to the design of cryptographic schemes
and cryptographic protocols. In fact, we have already referred to proofs of
knowledge in Sect. 9.2.

9.3.1 How to Define Proofs of Knowledge

What does it mean to say that a machine knows something? Any standard
dictionary suggests several meanings for the verb to know, and most meanings
are phrased with reference to awareness, a notion which is certainly inapplica-
ble in the context of machines. We must look for a behavioristic interpretation
of the verb to know. Indeed, it is reasonable to link knowledge with ability to
do something (e.g., the ability to write down whatever one knows). Hence, we
will say that a machine knows a string α if it can output the string α. But this
seems to be total nonsense too: a machine has a well-defined output – either
the output equals α or it does not. So what can be meant by saying that a
machine can do something? Loosely speaking, it may mean that the machine
can be easily modified so that it does whatever is claimed. More precisely,
it may mean that there exists an efficient machine that, using the original
machine as a black-box (or given its code as an input), outputs whatever is
claimed.

So much for defining the “knowledge of machines”. Yet, whatever a ma-
chine knows or does not know is “its own business”. What can be of interest
and reference to the outside is the question of what can be deduced about the
knowledge of a machine after interacting with it. Hence, we are interested in
proofs of knowledge (rather than in mere knowledge).

For sake of simplicity let us consider a concrete question: how can a ma-
chine prove that it knows a 3-coloring of a graph? An obvious way is just
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to send the 3-coloring to the verifier. Yet, we claim that applying the proto-
col in Fig. 1.2 (i.e., the zero-knowledge proof system for 3-colorability) is an
alternative way of proving knowledge of a 3-coloring of the graph.

Loosely speaking, we may say that an interactive machine, V , constitutes
a verifier for knowledge of 3-coloring if the probability that the verifier is con-
vinced by a machine P to accept the graph G is inversely proportional to the
difficulty of extracting a 3-coloring of G when using machine P as a “black
box”.4 Namely, the extraction of the 3-coloring is done by an oracle machine,
called an extractor, that is given access to a function specifying the behavior
P (i.e., the messages it sends in response to particular messages it may re-
ceive). We require that the (expected) running time of the extractor, on input
G and access to an oracle specifying P ’s messages, be inversely related (by
a factor polynomial in |G|) to the probability that P convinces V to accept
G. In case P always convinces V to accept G, the extractor runs in expected
polynomial-time. The same holds in case P convinces V to accept with no-
ticeable probability. (We stress that the latter special cases do not suffice for
a satisfactory definition; see discussion in [57, Sect. 4.7.1].)5

We mention that the concept of proofs of knowledge was first introduced
in [72], but the above formulation is based mostly on [14]. A famous applica-
tion of zero-knowledge proofs of knowledge is to the construction of identifi-
cation schemes (e.g., the Fiat–Shamir scheme [49]).

9.3.2 How to Construct Proofs of Knowledge

As hinted above, many of the known proof systems are in fact proofs of knowl-
edge. Furthermore, some (but not all) known zero-knowledge proofs (resp.,
arguments) are in fact proofs (resp., arguments) of knowledge.6 Indeed, a no-
table example is the zero-knowledge proof depicted in Fig. 1.2. For further
discussion, see [57, Sect. 4.7] and [12].

4 Indeed, as hinted above, one may consider also non-black-box extractors as
done in [12]. However, this limits the applicability of the definitions to provers that
are implemented by polynomial-size circuits.

5 In particular, note that the latter probability (i.e., of being convinced) may be
neither noticeable (i.e., bounded below by the reciprocal of some polynomial) nor
negligible (i.e., bounded above by the reciprocal of every polynomial). Thus, events
that occur with probability that is neither noticeable nor negligible cannot neither
be ignored nor occur with high probability when the experiment is repeated for an
a priori bounded polynomial number of times.

6 Arguments of knowledge are defined analogous to proofs of knowledge, while
limiting the extraction requirement to provers that are implemented by polynomial-
size circuits. In this case, it is natural to allow also non-black-box extraction, as
discussed in Footnote 4.
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9.4 Non-interactive Zero-Knowledge

In this section we consider non-interactive zero-knowledge proof systems. The
model, introduced in [20], consists of three entities: a prover, a verifier and a
uniformly selected reference string (which can be thought of as being selected
by a trusted third party). Both verifier and prover can read the reference
string, and each can toss additional coins. The interaction consists of a single
message sent from the prover to the verifier, who then is left with the final
decision (whether to accept or not). The (basic) zero-knowledge requirement
refers to a simulator that outputs pairs that should be computationally indis-
tinguishable from the distribution (of pairs consisting of a uniformly selected
reference string and a random prover message) seen in the real model.7 Non-
interactive zero-knowledge proof systems have numerous applications (e.g.,
to the construction of public-key encryption and signature schemes, where
the reference string may be incorporated in the public key). Several different
definitions of non-interactive zero-knowledge proofs were considered in the
literature.

• In the basic definition, one considers proving a single assertion of a priori
bounded length, where this length may be smaller than the length of the
reference string.

• A natural extension, required in many applications, is the ability to prove
multiple assertions of varying length, where the total length of these as-
sertions may exceed the length of the reference string (as long as the total
length is polynomial in the length of the reference string). This definition
is sometimes referred to as the unbounded definition, because the total
length of the assertions to be proven is not a priori bounded.

• Other natural extensions refer to the preservation of security (i.e., both
soundness and zero-knowledge) when the assertions to be proven are se-
lected adaptively (based on the reference string and possibly even based
on previous proofs).

• Finally, we mention the notion of simulation-soundness, which is related
to non-malleability. This extension, which mixes the zero-knowledge and
soundness conditions, refers to the soundness of proofs presented by an ad-
versary after it obtains proofs of assertions of its own choice (with respect
to the same reference string). This notion is important in applications
of non-interactive zero-knowledge proofs to the construction of public-
key encryption schemes secure against chosen ciphertext attacks (see [58,
Sect. 5.4.4.4]).

Constructing non-interactive zero-knowledge proofs seems more difficult than
constructing interactive zero-knowledge proofs. Still, based on standard in-

7 Note that the verifier does not affect the distribution seen in the real model,
and so the basic definition of (non-interactive) zero-knowledge does not refer to it.
The verifier (or rather a process of adaptively selecting assertions to be proven) will
be referred to in the adaptive variants of the definition.
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tractability assumptions (e.g., intractability of factoring), it is known how to
construct a non-interactive zero-knowledge proof (even in the adaptive and
non-malleable sense) for any NP-set.

Suggestions for Further Reading. For a definitional treatment of the
basic, unbounded and adaptive definitions see [57, Sect. 4.10]. Increasingly
stronger variants of the non-malleable definition are presented in [36] and [58,
Sect. 5.4.4.4]. A relatively simple construction for the basic model is presented
in [46] (see also [57, Sect. 4.10.2]). (A more efficient construction can be found
in [81].) A transformation of systems for the basic model into systems for
the unbounded model is also presented in [46] (and [57, Sect. 4.10.3]). Con-
structions for increasingly stronger variants of the (adaptive) non-malleable
definition are presented in [58, Sect. 5.4.4.4] and [36].

9.5 Statistical Zero-Knowledge

Recall that statistical zero-knowledge protocols are such in which the distri-
bution ensembles referred to in Definition 1.2.1 are required to be statisti-
cally indistinguishable (rather than computationally indistinguishable). Un-
der standard intractability assumptions, every NP-set has a statistical zero-
knowledge argument [23]. On the other hand, it is unlikely that all NP-sets
have statistical zero-knowledge proofs [50, 1]. Currently, the intractability as-
sumption used for constructing statistical zero-knowledge arguments (for NP)
seems stronger than the assumption used for constructing computational zero-
knowledge proofs (for NP). Assuming both constructs exist, the question of
which to prefer depends on the application (e.g., is it more important to pro-
tect the prover’s secrets or to protect the verifier from being convinced of
false assertions). In contrast, statistical zero-knowledge proofs, whenever they
exist, free us from this dilemma. Indeed, this is one out of several reasons for
studying these objects. That is:

• Statistical zero-knowledge proofs offer information-theoretic security to
both parties. Thus, whenever they exist, statistical zero-knowledge proofs
may be preferred over computational zero-knowledge proofs (which only
offer computational security to the prover) and over statistical zero-
knowledge arguments (which only offer computational security to the ver-
ifier).

• Statistical zero-knowledge proofs provide a clean model for the study of
various questions regarding zero-knowledge. Often, this study results in
techniques that are applicable also for computational zero-knowledge; one
example is mentioned below.

• The class of problems having statistical zero-knowledge proofs is interest-
ing from a complexity theoretic point of view. On one hand, this class is
likely to be a proper superset of BPP (e.g., it contains seemingly hard
problems such as quadratic residuosity [72], graph isomorphism [65], and
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a promise problem equivalent to the discrete logarithm problem [64]). On
the other hand, this class is contained in AM∩ coAM (cf. [1, 50]), which
is believed not to extend much beyond NP ∩ coNP. (AM is the class of
sets having two-round public-coin interactive proofs.)

In the rest of this section, we survey the main results regarding the internal
structure of the class of sets having statistical zero-knowledge proofs. This
study was initiated to a large extent by Okamoto [90]. We first present trans-
formations that, when applied to certain statistical zero-knowledge protocols,
yield protocols with additional properties. Next, we consider several struc-
tural properties of the class, most notably the existence of natural complete
problems (discovered by Sahai and Vadhan [99]). For further details see [101].

9.5.1 Transformations

The first transformation takes any public-coin interactive proof that is statis-
tical zero-knowledge with respect to the honest verifier, and returns a (public-
coin) statistical zero-knowledge [68]. When applied to a public-coin interactive
proof that is (computational) zero-knowledge with respect to the honest veri-
fier, the transformation yields a (computational) zero-knowledge proof. Thus,
this transformation “amplifies the security” of (public-coin) protocols, from
leaking nothing to the prescribed verifier into leaking nothing to any cheating
verifier.

The heart of the transformation is a suitable random selection proto-
col, which is used to emulate the verifier’s messages in the original protocol.
Loosely speaking, the random selection protocol is zero-knowledge in a strong
sense, and the effect of each of the parties on the protocol’s outcome is ad-
equately bounded. For example, it is impossible for the verifier to affect the
protocol’s outcome (by more than a negligible amount), whereas the prover
cannot increase the probability that the outcome hits any set by more than
some specific (super-polynomial) factor.

The first transformation calls our attention to public-coin interactive
proofs that are statistical zero-knowledge (with respect to the honest verifier).
In general, public-coin interactive proofs are easier to manipulate than gen-
eral interactive proofs. The second transformation takes any statistical zero-
knowledge (with respect to the honest verifier) proof and returns one that is
of the public-coin type (see [70], which builds on [90]). Unfortunately, the sec-
ond transformation, which is analogous to a previously known result regarding
interactive proofs [74], does not extend to computational zero-knowledge,

Combined together, the two transformations imply that the class of sets
(or promise problems) having interactive proofs that are statistical zero-
knowledge with respect to the honest verifier equals the class of sets having
(general) statistical zero-knowledge proofs.
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9.5.2 Complete Problems and Structural Properties

In the rest of this section we consider classes of promise problems (rather
than classes of decision problems or sets). Specifically, we denote by SZK
the class of problems having a statistical zero-knowledge proof. Recall that
BPP ⊆ SZK ⊆ AM∩ coAM, and that the first inclusion is believed to be
strict.

One remarkable property of the class SZK is that it has natural complete
problems (i.e., problems in SZK such that any problem in SZK is Karp-
reducible to them). One such problem is to distinguish pairs of distributions
(given via sampling circuits) that are statistically close from pairs that are
statistically far apart [99]. Another such problem is, given two distributions of
sufficiently different entropy, to tell which has higher entropy [70]. It is indeed
interesting that “the class statistical zero-knowledge is all about statistics (or
probability)”.

Another remarkable property of SZK is the fact that it is closed under
complementation (see [99], which builds on [90]). In fact, SZK is closed under
NC1-truth-table reductions [99].

Non-interactive SZK. A systematic study of non-interactive statistical
zero-knowledge proof systems was conducted in [69]. The main result is ev-
idence to the non-triviality of the class (i.e., it contains sets outside BPP if
and only if SZK �= BPP).

9.6 Resettability of a Party’s Random-Tape (rZK and
rsZK)

Having gained a reasonable understanding of the security of cryptographic
schemes and protocols as stand-alone, cryptographic research is moving to-
wards the study of stronger notions of security. Examples include the effect of
executing several instances of the same protocol concurrently (e.g., the mal-
leability of an individual protocol [38]) as well as the effect of executing the
protocol concurrently to any other activity (or set of protocols) [27]. Another
example of a stronger notion of security, which is of theoretical and practical
interest, is the security of protocols under a “resetting” attack. In such an
attack a party may be forced to execute a protocol several times while us-
ing the same random-tape and without coordinating these executions (e.g.,
by maintaining a joint state). The theoretical interest in this notion stems
from the fact that randomness plays a pivotal role in cryptography, and thus
the question of whether one needs fresh randomness in each invocation of a
cryptographic protocol is very natural. The practical importance is due to the
fact that in many settings it is impossible or undesirable to generate fresh
randomness on the fly (or to maintain a state between executions).

Resettable Zero-Knowledge (rZK). Resettability of players in a crypto-
graphic protocol was first considered in [28], which studies what happens to
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the security of zero-knowledge interactive proofs and arguments when the ver-
ifier can reset the prover to use the same random tape in multiple concurrent
executions. Protocols that remain zero-knowledge against such a verifier are
called resettable zero-knowledge (rZK). Put differently, the question of prover
resettability is whether zero-knowledge is achievable when the prover cannot
use fresh randomness in new interactions, but is rather restricted to (re-)using
a fixed number of coins. Resettability implies security under concurrent ex-
ecutions: As shown in [28], any rZK protocol constitutes a concurrent zero-
knowledge protocol. The opposite direction does not hold (in general), and
indeed it was not a priori clear whether (non-trivial) rZK protocols may at all
exist. Under standard intractability assumptions, it was shown that resettable
zero-knowledge interactive proofs for any NP-set do exist [28]. (For related
models and efficiency improvements, see [28] and Sect. 5.5.3, respectively.)

Resettably Sound Zero-Knowledge (rsZK). Resettably sound proofs and
arguments maintain soundness even when the prover can reset the verifier
to use the same random coins in repeated executions of the protocol. This
notion was studied in [13], where the authors obtained the following results:
On one hand, under standard intractability assumptions, any NP-set has a
(constant-round) resettably sound zero-knowledge argument. On the other
hand, resettably sound zero-knowledge proofs are possible only for languages
in P/poly. The question of whether a protocol for NP can be both resettably
sound and resettable-zero-knowledge is still open.

9.7 Zero-Knowledge in Other Models

As stated above, zero-knowledge is a property of some interactive strategies,
regardless of the goal (or other properties) of these strategies. We have seen
that zero-knowledge can be meaningfully applied in the context of interac-
tive proofs and arguments. Here we briefly discuss the applicability of zero-
knowledge to other settings in which, as in the case of arguments, there are
restrictions on the type of prover strategies. We stress that the restrictions
discussed here refer to the strategies employed by the prover both in case it
tries to prove valid assertions (i.e., the completeness condition) and in case it
tries to fool the verifier to believe false statements (i.e., the soundness condi-
tion). Thus, the validity of the verifier decision (concerning false statements)
depends on whether this restriction (concerning potential “cheating” prover
strategies) really holds. The reason to consider these restricted models is that
they enable us to achieve results that are not possible in the general model of
interactive proofs (cf., [17, 23, 80, 86]). We consider restrictions of two types:
computational and physical. We start with the latter.

Multiprover Interactive Proofs (MIP). In the so-called multiprover in-
teractive proof model, denoted MIP (cf., [17]), the prover is split into several
(say, two) entities and the restriction (or assumption) is that these entities
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cannot interact with each other. Actually, the formulation allows them to
coordinate their strategies prior to interacting with the verifier8 but it is cru-
cial that they don’t exchange messages among themselves while interacting
with the verifier. The multiprover model is reminiscent of the common police
procedure of isolating collaborating suspects and interrogating each of them
separately. A typical application in which the two-prover model may be as-
sumed is an ATM that verifies the validity of a pair of smart-cards inserted
in two isolated slots of the ATM. The advantage in using such a split system
is that it enables the presentation of (perfect) zero-knowledge proof systems
for any set in NP, while using no intractability assumptions [17]. For further
details see [57, Sect. 4.11].

Strict Computational Soundness (a.k.a. Timed-ZK). Recall that we
have already discussed one model of computational-soundness; that is, the
model of arguments refers to prover strategies that are implementable by prob-
abilistic polynomial-time machines with adequate auxiliary input.9 A more
strict restriction, studied in [41], refers to prover strategies that are imple-
mentable within an a priori fixed number of computation steps (where this
number is a fixed polynomial in the length of the common input). In reality,
the prover’s actual running time is monitored by the verifier that may run for
a longer time, and the prover’s utility is due to an auxiliary input that it has.
(An analogous model, where the length of the auxiliary input is a priori fixed,
was also considered in [41].)

8 This is implicit in the universal quantifier used in the soundness condition.
9 A related model is that of CS-proofs, where the prover’s strategy is allowed

to run in time that is polynomial in the time it takes to decide membership of the
common input via a canonical decision procedure for the language [86].
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